Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Virol ; 95(11): e29229, 2023 11.
Article in English | MEDLINE | ID: mdl-37966995

ABSTRACT

Antibody assays with the nucleocapsid (NC) protein as the target antigen can identify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections when polymerase chain reaction (PCR) analyses are unavailable. Regarding the kinetics of NC-specific antibodies, vaccine breakthroughs with Omicron subvariants may differ from infections with the ancestral wild-type virus. Therefore, we evaluated which assays have the highest sensitivity for detecting NC-specific antibodies after various intervals since breakthrough infections with an Omicron subvariant. The study included 279 samples from vaccinated subjects who experienced PCR-confirmed Omicron breakthrough infections between 21 and 266 days before sampling. The samples were comparatively assessed with the Elecsys® Anti-SARS-CoV-2 N (Roche), the Anti-SARS-CoV-2-NCP-ELISA (Euroimmun), the recomLine SARS-CoV-2 IgG (Mikrogen), and the SARS-CoV-2 ViraChip IgG assays (Viramed). In the whole cohort, the Elecsys® Anti-SARS-CoV-2 N assay displayed the highest sensitivity (93%, p < 0.0001), followed by the recomLine SARS-CoV-2 IgG assay (70%), the SARS-CoV-2 ViraChip IgG assay (41%) and the Anti-SARS-CoV-2-NCP-ELISA (35%). Although measured antibody levels and time-dependent sensitivities differed, the extent of the antibody decrease was similar among all assays. As demonstrated by this study, manufacturer-dependent differences in the sensitivities of NC-specific antibody assays should be considered when serology is applied to link previous SARS-CoV-2 infections with potential post-COVID sequelae.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/prevention & control , Nucleocapsid , Antibodies, Viral , Immunoglobulin G , Nucleocapsid Proteins , Breakthrough Infections , Sensitivity and Specificity
2.
Viruses ; 15(8)2023 07 26.
Article in English | MEDLINE | ID: mdl-37631967

ABSTRACT

Background Sotrovimab, a monoclonal antibody against SARS-CoV-2, is used as a pre-exposition prophylaxis (PrEP) against COVID-19, but monitoring strategies using routine test systems have not been defined. Methods Twenty kidney transplant recipients without antibodies after vaccination received 500 mg Sotrovimab. Antibody levels were quantified over eight weeks using live-virus neutralization (BA1 and BA2), antibody binding assays (TrimericS, Elecsys, QuantiVAC) and surrogate virus neutralization tests (sVNTs; TECOmedical, cPass and NeutraLISA). Results Sotrovimab neutralized both Omicron subvariants (BA1 NT titer 90 (+-50) > BA2 NT titer 33 (+-15) one hour post infusion). Sotrovimab was measurable on all used immunoassays, although a prior 1:100 dilution was necessary for Elecsys due to a presumed prozone effect. The best correlation with live-virus neutralization titers was found for QuantiVAC and TrimericS, with a respective R2 of 0.65/0.59 and 0.76/0.57 against BA1/BA2. Elecsys showed an R2 of 0.56/0.54 for BA1/BA2, respectively. sVNT values increased after infusion but had only a poor correlation with live-virus neutralization titers (TECOmedical and cPass) or did not reach positivity thresholds (NeutraLISA). Conclusion Antibody measurements by the used immunoassays showed differences in antibody levels and only a limited correlation with neutralization capacity. We do not recommend sVNTs for monitoring SARS-CoV-2 neutralization by Sotrovimab.


Subject(s)
COVID-19 , Kidney Transplantation , Pre-Exposure Prophylaxis , Humans , COVID-19 Vaccines , COVID-19/prevention & control , Kidney Transplantation/adverse effects , SARS-CoV-2 , Antibodies, Monoclonal, Humanized/therapeutic use
3.
Diagnostics (Basel) ; 13(13)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37443672

ABSTRACT

Primary infection with the Omicron variant of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) can be serologically identified with distinct profiles of neutralizing antibodies (nAbs), as indicated by high titers against the Omicron variant and low titers against the ancestral wild-type (WT). Here, we evaluated whether a novel surrogate virus neutralization assay (sVNT) that simultaneously quantifies the binding inhibition of angiotensin-converting enzyme 2 (ACE2) to the proteins of the WT- and Omicron-specific receptor-binding domains (RBDs) can identify nAb profiles after primary Omicron infection with accuracy similar to that of variant-specific live-virus neutralization tests (NTs). Therefore, we comparatively tested 205 samples from individuals after primary infection with the Omicron variant and the WT, and vaccinated subjects with or without Omicron breakthrough infections. Indeed, variant-specific RBD-ACE2 binding inhibition levels significantly correlated with respective NT titers (p < 0.0001, Spearman's r = 0.92 and r = 0.80 for WT and Omicron, respectively). In addition, samples from individuals after primary Omicron infection were securely identified with the sVNT according to their distinctive nAb profiles (area under the curve = 0.99; sensitivity: 97.2%; specificity: 97.84%). Thus, when laborious live-virus NTs are not feasible, the novel sVNT we evaluated in this study may serve as an acceptable substitute for the serological identification of individuals with primary Omicron infection.

4.
Clin Chem Lab Med ; 61(7): 1349-1358, 2023 06 27.
Article in English | MEDLINE | ID: mdl-36756735

ABSTRACT

OBJECTIVES: The WHO's standardized measuring unit, "binding antibody units per milliliter (BAU/mL)," should allow the harmonization of quantitative results by different commercial Anti-SARS-CoV-2 immunoassays. However, multiple studies demonstrate inter-assay discrepancies. The antigenic changes of the Omicron variant affect the performance of Spike-specific immunoassays. This study evaluated the variation of quantitative Anti-SARS-CoV-2-Spike antibody measurements among 46, 50, and 44 laboratories in three rounds of a national external quality assessment (EQA) prior to and after the emergence of the Omicron variant in a diagnostic near-to-real-life setting. METHODS: We analyzed results reported by the EQA participant laboratories from single and sequential samples from SARS-CoV-2 convalescent, acutely infected, and vaccinated individuals, including samples obtained after primary and breakthrough infections with the Omicron variant. RESULTS: The three immunoassays most commonly used by the participants displayed a low intra-assay and inter-laboratory variation with excellent reproducibility using identical samples sent to the participants in duplicates. In contrast, the inter-assay variation was very high with all samples. Notably, the ratios of BAU/mL levels quantified by different immunoassays were not equal among all samples but differed between vaccination, past, and acute infection, including primary infection with the Omicron variant. The antibody kinetics measured in vaccinated individuals strongly depended on the applied immunoassay. CONCLUSIONS: Measured BAU/mL levels are only inter-changeable among different laboratories when the same assay was used for their assessment. Highly variable ratios of BAU/mL quantifications among different immunoassays and infection stages argue against the usage of universal inter-assay conversion factors.


Subject(s)
COVID-19 , Humans , Reproducibility of Results , COVID-19/diagnosis , SARS-CoV-2 , Antibodies, Viral , Antibodies, Neutralizing
5.
Microbiol Spectr ; 11(1): e0231422, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36622205

ABSTRACT

Neutralizing antibodies (nAbs) are considered a valuable marker for measuring humoral immunity against SARS-CoV-2. However, live-virus neutralization tests (NTs) require high-biosafety-level laboratories and are time-consuming. Therefore, surrogate virus neutralization tests (sVNTs) have been widely applied, but unlike most anti-spike (S) antibody assays, NTs and sVNTs are not harmonized, requiring further evaluation and comparative analyses. This study compared seven commercial sVNTs and anti-S-antibody assays with a live-virus NT as a reference, using a panel of 720 single and longitudinal serum samples from 666 convalescent patients after SARS-CoV-2 infection. The sensitivity of these assays for detecting antibodies ranged from 48 to 94% after PCR-confirmed infection and from 56% to 100% relative to positivity in the in-house live-virus NT. Furthermore, we performed receiver operating characteristic (ROC) curve analyses to determine which immunoassays were most suitable for assessing nAb titers exceeding a specific cutoff (NT titer, ≥80) and found that the NeutraLISA and the cPass assays reached the highest area under the curve (AUC), exceeding 0.91. In addition, when the assays were compared for their correlation with nAb kinetics over time in a set of longitudinal samples, the extent of the measured decrease of nAbs after infection varied widely among the evaluated immunoassays. Finally, in vaccinated convalescent patients, high titers of nAbs exceeded the upper limit of the evaluated assays' quantification ranges. Based on data from this study, we conclude that commercial immunoassays are acceptable substitutes for live-virus NTs, particularly when additional adapted cutoffs are employed to detect nAbs beyond a specific threshold titer. IMPORTANCE While the measurement of neutralizing antibodies is considered a valuable tool in assessing protection against SARS-CoV-2, neutralization tests employ live-virus isolates and cell culture, requiring advanced laboratory biosafety levels. Including a large sample panel (over 700 samples), this study provides adapted cutoff values calculated for seven commercial immunoassays (including four surrogate neutralization assays and a protein-based microarray) that robustly correlate with specific titers of neutralizing antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Antibodies, Neutralizing , Neutralization Tests , Immunoglobulin G , Antibodies, Viral
6.
Front Immunol ; 13: 946318, 2022.
Article in English | MEDLINE | ID: mdl-35928813

ABSTRACT

Background and Methods: The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) Omicron (B.1.1.529) variant is the antigenically most distinct variant to date. As the heavily mutated spike protein enables neutralization escape, we studied serum-neutralizing activities of naïve and vaccinated individuals after Omicron BA.1 or BA.2 sub-lineage infections in live virus neutralization tests with Omicron BA.1, Omicron BA.2, wildtype (WT, B1.1), and Delta (B.1.617.2) strains. Serum samples obtained after WT infections and three-dose mRNA vaccinations with and without prior infection were included as controls. Results: Primary BA.1 infections yielded reduced neutralizing antibody levels against WT, Delta, and Omicron BA.2, while samples from BA.2-infected individuals showed almost no cross-neutralization against the other variants. Serum neutralization of Omicron BA.1 and BA.2 variants was detectable after three-dose mRNA vaccinations, but with reduced titers. Vaccination-breakthrough infections with either Omicron BA.1 or BA.2, however, generated equal cross-neutralizing antibody levels against all SARS-CoV-2 variants tested. Conclusions: Our study demonstrates that although Omicron variants are able to enhance cross-neutralizing antibody levels in pre-immune individuals, primary infections with BA.1 or BA.2 induced mostly variant-specific neutralizing antibodies, emphasizing the differently shaped humoral immunity induced by the two Omicron variants. These data thus contribute substantially to the understanding of antibody responses induced by primary Omicron infections or multiple exposures to different SARS-CoV-2 variants and are of particular importance for developing vaccination strategies in the light of future emerging variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , Humans , Membrane Glycoproteins , Neutralization Tests , RNA, Messenger , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins
7.
Microbiol Spectr ; 10(5): e0212922, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36005839

ABSTRACT

The SARS-CoV-2 Omicron variant is characterized by substantial changes in the antigenic structure of the Spike (S) protein. Therefore, antibodies induced by primary Omicron infection lack neutralizing activity against earlier variants. In this study, we analyzed whether these antigenic changes impact the sensitivity of commercial anti-SARS-CoV-2 antibody assays. Sera from 37 unvaccinated, convalescent individuals after putative primary Omicron infection were tested with a panel of 20 commercial anti-SARS-CoV-2 immunoassays. As controls, we used samples from 43 individuals after primary infection with the SARS-CoV-2 ancestral wild-type strain. In addition, variant-specific live-virus neutralization assays were used as a reference for the presence of SARS-CoV-2-specific antibodies in the samples. Notably, in Omicron convalescents, there was a statistically significant reduction in the sensitivity of all antibody assays containing S or its receptor-binding-domain (RBD) as antigens. Furthermore, antibody levels quantified by these assays displayed a weaker correlation with Omicron-specific neutralizing antibody titers than with those against the wild type. In contrast, the sensitivity of nucleocapsid-protein-specific immunoassays was similar in wild-type and Omicron-infected subjects. In summary, the antigenic changes in the Omicron S lead to reduced immunoreactivity in the current commercial S- and RBD-specific antibody assays, impairing their diagnostic performance. IMPORTANCE This study demonstrates that the antigenic changes of the SARS-CoV-2 Omicron variant affect test results from commercial Spike- and RBD-specific antibody assays, significantly diminishing their sensitivities and diagnostic abilities to assess neutralizing antibodies.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Neutralization Tests , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , SARS-CoV-2 , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , COVID-19/diagnosis , Antibodies, Viral , Antibodies, Neutralizing
8.
J Clin Neurosci ; 23: 106-110, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26432497

ABSTRACT

We present 24months of prospective data from a new model of care for transient ischemic attacks (TIA) and minor stroke, established at the Royal North Shore Hospital, a tertiary teaching hospital in Sydney, Australia. Prior to 2011, approximately 200 patients were admitted to our emergency department (ED) annually, following presentation with a suspected TIA. These patients had an average length of stay of 5.3days. Following the establishment of a twice weekly multidisciplinary, one stop, stroke prevention and hospital avoidance clinic, all patients with suspected TIA were investigated and treated as outpatients. There was an average time to clinic from the initial presentation in the ED of 3.9days. Symptoms that were highly suggestive of TIA were seen in 47% of patients, and an additional 14% had MRI-confirmed acute stroke. In total, 405 patients were referred to the clinic, saving 2146.5 inpatient bed days and approximately AUD$1,180,575. Our model of care for patients with suspected TIA provides early access for investigation, treatment and management of the risk factors. The rapid access TIA clinic is highly cost effective and provides a transferable model of care for other health districts with similar patient loads and cost structures.


Subject(s)
Emergency Service, Hospital/trends , Ischemic Attack, Transient/epidemiology , Ischemic Attack, Transient/therapy , Point-of-Care Systems/trends , Stroke/epidemiology , Stroke/therapy , Adult , Aged , Aged, 80 and over , Australia/epidemiology , Female , Follow-Up Studies , Hospitalization/trends , Humans , Ischemic Attack, Transient/diagnosis , Male , Middle Aged , Prospective Studies , Risk Factors , Stroke/diagnosis , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...