Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 10: 3086, 2019.
Article in English | MEDLINE | ID: mdl-32038630

ABSTRACT

Immunoglobulin superfamily member (IgSF) proteins play a significant role in regulating immune responses with surface expression on all immune cell subsets, making the IgSF an attractive family of proteins for therapeutic targeting in human diseases. We have developed a directed evolution platform capable of engineering IgSF domains to increase affinities for cognate ligands and/or introduce binding to non-cognate ligands. Using this scientific platform, ICOSL domains have been derived with enhanced binding to ICOS and with additional high-affinity binding to the non-cognate receptor, CD28. Fc-fusion proteins containing these engineered ICOSL domains significantly attenuate T cell activation in vitro and in vivo and can inhibit development of inflammatory diseases in mouse models. We also present evidence that engineered ICOSL domains can be formatted to selectively provide costimulatory signals to augment T cell responses. Our scientific platform thus provides a system for developing therapeutic protein candidates with selective biological impact for treatments of a wide array of human disorders including cancer and autoimmune/inflammatory diseases.


Subject(s)
Immunoglobulins/chemistry , Immunoglobulins/genetics , Multigene Family , Animals , CD28 Antigens/genetics , CD28 Antigens/immunology , Directed Molecular Evolution , Female , Humans , Immunoglobulins/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Protein Domains , T-Lymphocytes/immunology
3.
Neuron ; 93(5): 1035-1048.e5, 2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28279351

ABSTRACT

GABAergic interneurons are essential for neural circuit function, and their loss or dysfunction is implicated in human neuropsychiatric disease. In vitro methods for interneuron generation hold promise for studying human cellular and functional properties and, ultimately, for therapeutic cell replacement. Here we describe a protocol for generating cortical interneurons from hESCs and analyze the properties and maturation time course of cell types using single-cell RNA-seq. We find that the cell types produced mimic in vivo temporal patterns of neuron and glial production, with immature progenitors and neurons observed early and mature cortical neurons and glial cell types produced late. By comparing the transcriptomes of immature interneurons to those of more mature neurons, we identified genes important for human interneuron differentiation. Many of these genes were previously implicated in neurodevelopmental and neuropsychiatric disorders.


Subject(s)
Cell Differentiation/physiology , Cell Movement/physiology , GABAergic Neurons/cytology , Interneurons/cytology , Nerve Tissue Proteins/metabolism , Neuroglia/cytology , Cells, Cultured , Humans , Neurogenesis/physiology , Single-Cell Analysis , Transcription Factors/metabolism
4.
Cell Stem Cell ; 20(1): 120-134, 2017 01 05.
Article in English | MEDLINE | ID: mdl-28094016

ABSTRACT

During human brain development, multiple signaling pathways generate diverse cell types with varied regional identities. Here, we integrate single-cell RNA sequencing and clonal analyses to reveal lineage trees and molecular signals underlying early forebrain and mid/hindbrain cell differentiation from human embryonic stem cells (hESCs). Clustering single-cell transcriptomic data identified 41 distinct populations of progenitor, neuronal, and non-neural cells across our differentiation time course. Comparisons with primary mouse and human gene expression data demonstrated rostral and caudal progenitor and neuronal identities from early brain development. Bayesian analyses inferred a unified cell-type lineage tree that bifurcates between cortical and mid/hindbrain cell types. Two methods of clonal analyses confirmed these findings and further revealed the importance of Wnt/ß-catenin signaling in controlling this lineage decision. Together, these findings provide a rich transcriptome-based lineage map for studying human brain development and modeling developmental disorders.


Subject(s)
Brain/embryology , Cell Lineage , Embryonic Development , Human Embryonic Stem Cells/cytology , Single-Cell Analysis/methods , Animals , Brain/metabolism , Cell Line , Cell Lineage/genetics , Clone Cells , Embryonic Development/genetics , Humans , Mice , Models, Biological , Neurons/cytology , Neurons/metabolism , Reproducibility of Results , Sequence Analysis, RNA , Transcription Factors/metabolism , Transcriptome/genetics , Wnt Signaling Pathway/genetics
5.
Nat Immunol ; 5(7): 752-60, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15184896

ABSTRACT

T cell-derived cytokines are important in the development of an effective immune response, but when dysregulated they can promote disease. Here we identify a four-helix bundle cytokine we have called interleukin 31 (IL-31), which is preferentially produced by T helper type 2 cells. IL-31 signals through a receptor composed of IL-31 receptor A and oncostatin M receptor. Expression of IL-31 receptor A and oncostatin M receptor mRNA was induced in activated monocytes, whereas epithelial cells expressed both mRNAs constitutively. Transgenic mice overexpressing IL-31 developed severe pruritus, alopecia and skin lesions. Furthermore, IL-31 receptor expression was increased in diseased tissues derived from an animal model of airway hypersensitivity. These data indicate that IL-31 may be involved in promoting the dermatitis and epithelial responses that characterize allergic and non-allergic diseases.


Subject(s)
Dermatitis/immunology , Dermatitis/pathology , Interleukins/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Amino Acid Sequence , Animals , Flow Cytometry , Gene Deletion , Gene Expression Profiling , Humans , Hypersensitivity/immunology , Hypersensitivity/pathology , Infusion Pumps, Implantable , Interleukins/chemistry , Interleukins/genetics , Interleukins/pharmacology , Lung/immunology , Lung/pathology , Lymphocyte Activation , Mice , Mice, Knockout , Mice, Transgenic , Molecular Sequence Data , Polymerase Chain Reaction , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Cytokine/genetics , Receptors, Interleukin/chemistry , Receptors, Interleukin/genetics , Receptors, Interleukin/metabolism , Receptors, Oncostatin M , Transgenes/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...