Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(49): e2123487119, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36454749

ABSTRACT

Hexanucleotide G4C2 repeat expansions in the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Dipeptide repeat proteins (DPRs) generated by translation of repeat-containing RNAs show toxic effects in vivo as well as in vitro and are key targets for therapeutic intervention. We generated human antibodies that bind DPRs with high affinity and specificity. Anti-GA antibodies engaged extra- and intra-cellular poly-GA and reduced aggregate formation in a poly-GA overexpressing human cell line. However, antibody treatment in human neuronal cultures synthesizing exogenous poly-GA resulted in the formation of large extracellular immune complexes and did not affect accumulation of intracellular poly-GA aggregates. Treatment with antibodies was also shown to directly alter the morphological and biochemical properties of poly-GA and to shift poly-GA/antibody complexes to more rapidly sedimenting ones. These alterations were not observed with poly-GP and have important implications for accurate measurement of poly-GA levels including the need to evaluate all centrifugation fractions and disrupt the interaction between treatment antibodies and poly-GA by denaturation. Targeting poly-GA and poly-GP in two mouse models expressing G4C2 repeats by systemic antibody delivery for up to 16 mo was well-tolerated and led to measurable brain penetration of antibodies. Long-term treatment with anti-GA antibodies produced improvement in an open-field movement test in aged C9orf72450 mice. However, chronic administration of anti-GA antibodies in AAV-(G4C2)149 mice was associated with increased levels of poly-GA detected by immunoassay and did not significantly reduce poly-GA aggregates or alleviate disease progression in this model.


Subject(s)
Genes, Regulator , Poly A , Animals , Humans , Mice , Antigen-Antibody Complex , C9orf72 Protein/genetics , Dipeptides , Disease Models, Animal
2.
J Immunol ; 186(3): 1769-80, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21191068

ABSTRACT

Chronic pain resulting from inflammatory and neuropathic disorders causes considerable economic and social burden. For a substantial proportion of patients, conventional drug treatments do not provide adequate pain relief. Consequently, novel approaches to pain management, involving alternative targets and new therapeutic modalities compatible with chronic use, are being sought. Nerve growth factor (NGF) is a major mediator of chronic pain. Clinical testing of NGF antagonists is ongoing, and clinical proof of concept has been established with a neutralizing mAb. Active immunization, with the goal of inducing therapeutically effective neutralizing autoreactive Abs, is recognized as a potential treatment option for chronic diseases. We have sought to determine if such a strategy could be applied to chronic pain by targeting NGF with a virus-like particle (VLP)-based vaccine. A vaccine comprising recombinant murine NGF conjugated to VLPs from the bacteriophage Qß (NGFQß) was produced. Immunization of mice with NGFQß induced anti-NGF-specific IgG Abs capable of neutralizing NGF. Titers could be sustained over 1 y by periodic immunization but declined in the absence of boosting. Vaccination with NGFQß substantially reduced hyperalgesia in collagen-induced arthritis or postinjection of zymosan A, two models of inflammatory pain. Long-term NGFQß immunization did not change sensory or sympathetic innervation patterns or induce cholinergic deficits in the forebrain, nor did it interfere with blood-brain barrier integrity. Thus, autovaccination targeting NGF using a VLP-based approach may represent a novel modality for the treatment of chronic pain.


Subject(s)
Hyperalgesia/immunology , Hyperalgesia/prevention & control , Inflammation Mediators/therapeutic use , Nerve Growth Factors/immunology , Pain Management , Pain/immunology , Vaccines, Virus-Like Particle/immunology , Acute Disease , Allolevivirus/immunology , Animals , Antibodies, Viral/biosynthesis , Antibodies, Viral/physiology , Antibodies, Viral/therapeutic use , Cell Line, Tumor , Chronic Disease , Drug Evaluation, Preclinical , Hyperalgesia/virology , Inflammation/immunology , Inflammation/pathology , Inflammation/prevention & control , Inflammation Mediators/adverse effects , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Nerve Growth Factors/adverse effects , Nerve Growth Factors/therapeutic use , Neutralization Tests , Pain/pathology , Rats , Time Factors , Vaccines, Conjugate/adverse effects , Vaccines, Conjugate/immunology , Vaccines, Conjugate/therapeutic use , Vaccines, Virus-Like Particle/adverse effects , Vaccines, Virus-Like Particle/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...