Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Eng ; 71(2): 446-455, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37603484

ABSTRACT

OBJECTIVE: Total artificial hearts (TAH) serve as a temporary treatment for severe biventricular heart failure. The limited durability and complication rates of current devices hamper long-term cardiac replacement. The aim of this study was to assess the feasibility of a novel valveless pumping principle for a durable pulsatile TAH (ShuttlePump). METHODS: The pump features a rotating and linearly shuttling piston within a cylindrical housing with two in- and outlets. With a single moving piston, the ShuttlePump delivers pulsatile flow to both systemic and pulmonary circulation. The pump and actuation system were designed iteratively based on analytical and in silico methods, utilizing finite element methods (FEM) and computational fluid dynamics (CFD). Pump characteristics were evaluated experimentally in a mock circulation loop mimicking the cardiovascular system, while hemocompatibility-related parameters were calculated numerically. RESULTS: Pump characteristics cover the entire required operating range for a TAH, providing 2.5-9 L/min of flow rate against 50-160 mmHg arterial pressures at stroke frequencies of 1.5-5 Hz while balancing left and right atrial pressures. FEM analysis showed mean overall copper losses of 8.84 W, resulting in a local maximum blood temperature rise of <2 K. The CFD results of the normalized index of hemolysis were 3.57 mg/100 L, and 95% of the pump's blood volume was exchanged after 1.42 s. CONCLUSION AND SIGNIFICANCE: This study indicates the feasibility of a novel pumping system for a TAH with numerical and experimental results substantiating further development of the ShuttlePump.


Subject(s)
Heart Failure , Heart, Artificial , Heart-Assist Devices , Humans , Arterial Pressure , Pulsatile Flow
2.
Semin Thorac Cardiovasc Surg ; 34(1): 238-248, 2022.
Article in English | MEDLINE | ID: mdl-34166811

ABSTRACT

Treatment of univentricular hearts remains restricted to palliative surgical corrections (Fontan pathway). The established Fontan circulation lacks a subpulmonary pressure source and is commonly accompanied by progressively declining hemodynamics. A novel cavopulmonary assist device (CPAD) may hold the potential for improved therapeutic management of Fontan patients by chronic restoration of biventricular equivalency. This study aimed at translating clinical objectives toward a functional CPAD with preclinical proof regarding hydraulic performance, hemocompatibility and electric power consumption. A prototype composed of hemocompatible titanium components, ceramic bearings, electric motors, and corresponding drive unit was manufactured for preclinical benchtop analysis: hydraulic performance in general and hemocompatibility characteristics in particular were analyzed in-silico (computational fluid dynamics) and validated in-vitro. The CPAD's power consumption was recorded across the entire operational range. The CPAD delivered pressure step-ups across a comprehensive operational range (0-10 L/min, 0-50 mm Hg) with electric power consumption below 1.5 W within the main operating range. In-vitro hemolysis experiments (N = 3) indicated a normalized index of hemolysis of 3.8 ± 1.6 mg/100 L during design point operation (2500 rpm, 4 L/min). Preclinical investigations revealed the CPAD's potential for low traumatic and thrombogenic support of a heterogeneous Fontan population (pediatric and adult) with potentially accompanying secondary disorders (e.g., elevated pulmonary vascular resistance or systemic ventricular insufficiency) at distinct physical activities. The low power consumption implied adequate settings for a small, fully implantable system with transcutaneous energy transfer. The successful preclinical proof provides the rationale for acute and chronic in-vivo trials aiming at the confirmation of laboratory findings and verification of hemodynamic benefit.


Subject(s)
Fontan Procedure , Heart-Assist Devices , Adult , Child , Fontan Procedure/adverse effects , Heart-Assist Devices/adverse effects , Hemodynamics , Hemolysis , Humans , Models, Cardiovascular , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...