Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Top Membr ; 92: 199-231, 2023.
Article in English | MEDLINE | ID: mdl-38007268

ABSTRACT

Cancer and neurodegenerative disease, albeit fundamental differences, share some common pathogenic mechanisms. Accordingly, both conditions are associated with aberrant cell proliferation and migration. Here, we review the causative role played by potassium (K+) channels, a fundamental class of proteins, in cancer and neurodegenerative disease. The concept that emerges from the review of the literature is that K+ channels can promote the development and progression of cancerous and neurodegenerative pathologies by dysregulating cell proliferation and migration. K+ channels appear to control these cellular functions in ways that not necessarily depend on their conducting properties and that involve the ability to directly or indirectly engage growth and survival signaling pathways. As cancer and neurodegenerative disease represent global health concerns, identifying commonalities may help understand the molecular basis for those devastating conditions and may facilitate the design of new drugs or the repurposing of existing drugs.


Subject(s)
Neoplasms , Neurodegenerative Diseases , Humans , Potassium Channels/metabolism , Neoplasms/drug therapy , Signal Transduction , Cell Proliferation/physiology
2.
Neural Regen Res ; 18(11): 2365-2369, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37282454

ABSTRACT

Ion channels modulate cellular excitability by regulating ionic fluxes across biological membranes. Pathogenic mutations in ion channel genes give rise to epileptic disorders that are among the most frequent neurological diseases affecting millions of individuals worldwide. Epilepsies are triggered by an imbalance between excitatory and inhibitory conductances. However, pathogenic mutations in the same allele can give rise to loss-of-function and/or gain-of-function variants, all able to trigger epilepsy. Furthermore, certain alleles are associated with brain malformations even in the absence of a clear electrical phenotype. This body of evidence argues that the underlying epileptogenic mechanisms of ion channels are more diverse than originally thought. Studies focusing on ion channels in prenatal cortical development have shed light on this apparent paradox. The picture that emerges is that ion channels play crucial roles in landmark neurodevelopmental processes, including neuronal migration, neurite outgrowth, and synapse formation. Thus, pathogenic channel mutants can not only cause epileptic disorders by altering excitability, but further, by inducing morphological and synaptic abnormalities that are initiated during neocortex formation and may persist into the adult brain.

3.
Cell Death Differ ; 30(3): 687-701, 2023 03.
Article in English | MEDLINE | ID: mdl-36207442

ABSTRACT

Potassium (K+) channels are robustly expressed during prenatal brain development, including in progenitor cells and migrating neurons, but their function is poorly understood. Here, we investigate the role of voltage-gated K+ channel KCNB1 (Kv2.1) in neocortical development. Neuronal migration of glutamatergic neurons was impaired in the neocortices of KCNB1 null mice. Migratory defects persisted into the adult brains, along with disrupted morphology and synaptic connectivity. Mice developed seizure phenotype, anxiety, and compulsive behavior. To determine whether defective KCNB1 can give rise to developmental channelopathy, we constructed Knock In (KI) mice, harboring the gene variant Kcnb1R312H (R312H mice) found in children with developmental and epileptic encephalopathies (DEEs). The R312H mice exhibited a similar phenotype to the null mice. Wild type (WT) and R312H KCNB1 channels made complexes with integrins α5ß5 (Integrin_K+ channel_Complexes, IKCs), whose biochemical signaling was impaired in R312H brains. Treatment with Angiotensin II in vitro, an agonist of Focal Adhesion kinase, a key component of IKC signaling machinery, corrected the neuronal abnormalities. Thus, a genetic mutation in a K+ channel induces severe neuromorphological abnormalities through non-conducting mechanisms, that can be rescued by pharmacological intervention. This underscores a previously unknown role of IKCs as key players in neuronal development, and implicate developmental channelopathies in the etiology of DEEs.


Subject(s)
Epilepsy , Neocortex , Animals , Mice , Epilepsy/genetics , Integrins/genetics , Mice, Knockout , Mutation , Potassium Channels/genetics
4.
PLoS One ; 15(10): e0240255, 2020.
Article in English | MEDLINE | ID: mdl-33035268

ABSTRACT

Biological organisms respond to environmental stressors by recruiting multiple cellular cascades that act to mitigate damage and ultimately enhance survival. This implies that compounds that interact with any of those pathways might improve organism's survival. Here, we report on an initial attempt to develop a drug screening assay based on the heat shock (HS) response of Caenorhabditis elegans nematodes. The protocol works by subjecting the worms to two HS conditions in the absence/presence of the test compounds. Post-heat shock survival is quantified manually or in semi-automatic manner by analyzing z-stack pictures. We blindly screened a cassette of 72 compounds in different developmental stages provided by Eli Lilly through their Open Innovation Drug Discovery program. The analysis indicated that, on average, therapeutically useful drugs increase survival to HS compared to compounds used in non-clinical settings. We developed a formalism that estimates the probability of a compound to enhance survival based on a comparison with a set of parameters calculated from a pool of 35 FDA-approved drugs. The method correctly identified the developmental stages of the Lilly compounds based on their relative abilities to enhance survival to the HS. Taken together these data provide proof of principle that an assay that measures the HS response of C. elegans can offer physiological and pharmacological insight in a cost- and time-efficient manner.


Subject(s)
Biological Assay/methods , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/physiology , Heat-Shock Response/physiology , Animals , Caenorhabditis elegans Proteins/genetics , Drug Evaluation, Preclinical/methods , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Response/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...