Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharm Res ; 35(7): 133, 2018 Apr 30.
Article in English | MEDLINE | ID: mdl-29713822

ABSTRACT

PURPOSE: To explain the effects of the osmolyte proline on the protein-protein interactions (PPI), viscosity and stability of highly concentrated antibody solutions in contrast to other neutral osmolytes. METHODS: The viscosity of ~225 mg/mL mAb solutions was measured with proline, glycine and trehalose as a function of pH and co-solute concentration up to 1.3 M. The stability was assessed via turbidity as well as size exclusion chromatography after 4 weeks storage at 40°C. The PPI strength was assessed qualitatively via the high concentration diffusion rate by dynamic light scattering. RESULTS: Increasing proline significantly reduced the mAb viscosity and increased the colloidal stability at pH 6, but not at pH 5 further from the mAb pI. In contrast, glycine and trehalose did not improve the viscosity nor stability. The normalized diffusion coefficient at high concentration, which is inversely proportional to the attractive PPI strength, increased with proline concentration but decreased with increasing glycine. CONCLUSIONS: Proline demonstrated greater efficacy for improving mAb viscosity and stability in contrast to glycine and trehalose due to its amphipathic structure and partial charge on the pyrrolidine side chain. These properties likely allow proline to screen the attractive electrostatic and hydrophobic interactions that promote self-association and high viscosities. Binary proline-histidine formulations also demonstrated greater viscosity reduction effects than histidine alone at the same total co-solute concentration, while maintaining a lower total solution osmolarity.


Subject(s)
Antibodies, Monoclonal/chemistry , Chemistry, Pharmaceutical/methods , Proline/chemistry , Antibodies, Monoclonal/analysis , Drug Stability , Pharmaceutical Solutions/analysis , Pharmaceutical Solutions/chemistry , Proline/analysis , Viscosity
2.
ACS Nano ; 7(1): 239-51, 2013 Jan 22.
Article in English | MEDLINE | ID: mdl-23230905

ABSTRACT

Although sub-100 nm nanoclusters of metal nanoparticles are of interest in many fields including biomedical imaging, sensors, and catalysis, it has been challenging to control their morphologies and chemical properties. Herein, a new concept is presented to assemble equilibrium Au nanoclusters of controlled size by tuning the colloidal interactions with a polymeric stabilizer, PLA(1k)-b-PEG(10k)-b-PLA(1k). The nanoclusters form upon mixing a dispersion of ~5 nm Au nanospheres with a polymer solution followed by partial solvent evaporation. A weakly adsorbed polymer quenches the equilibrium nanocluster size and provides steric stabilization. Nanocluster size is tuned from ~20 to ~40 nm by experimentally varying the final Au nanoparticle concentration and the polymer/Au ratio, along with the charge on the initial Au nanoparticle surface. Upon biodegradation of the quencher, the nanoclusters reversibly and fully dissociate to individual ~5 nm primary particles. Equilibrium cluster size is predicted semiquantitatively with a free energy model that balances short-ranged depletion and van der Waals attractions with longer-ranged electrostatic repulsion, as a function of the Au and polymer concentrations. The close spacings of the Au nanoparticles in the clusters produce strong NIR extinction over a broad range of wavelengths from 650 to 900 nm, which is of practical interest in biomedical imaging.


Subject(s)
Absorbable Implants , Crystallization/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Polymers/chemistry , Materials Testing , Particle Size
3.
J Pharm Sci ; 101(10): 3763-78, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22777686

ABSTRACT

Monoclonal antibodies continue to command a large market for treatment of a variety of diseases. In many cases, the doses required for therapeutic efficacy are large, limiting options for antibody delivery and administration. We report a novel formulation strategy based on dispersions of antibody nanoclusters that allows for subcutaneous injection of highly concentrated antibody (≈ 190 mg/mL). A solution of monoclonal antibody 1B7 was rapidly frozen and lyophilized using a novel spiral-wound in-situ freezing technology to generate amorphous particles. Upon gentle stirring, a translucent dispersion of approximately 430 nm protein clusters with low apparent viscosity (≈ 24 cp) formed rapidly in buffer containing the pharmaceutically acceptable crowding agents such as trehalose, polyethylene glycol, and n-methyl-2-pyrrolidone. Upon in vitro dilution of the dispersion, the nanoclusters rapidly reverted to monomeric protein with full activity, as monitored by dynamic light scattering and antigen binding. When administered to mice as an intravenous solution, subcutaneous solution, or subcutaneous dispersion at similar (4.6-7.3 mg/kg) or ultra-high dosages (51.6 mg/kg), the distribution and elimination kinetics were within error and the protein retained full activity. Overall, this method of generating high-concentration, low-viscosity dispersions of antibody nanoclusters could lead to improved administration and patient compliance, providing new opportunities for the biotechnology industry.


Subject(s)
Antibodies, Monoclonal/chemistry , Nanoparticles/chemistry , Pharmaceutical Solutions/chemistry , Proteins/chemistry , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacokinetics , Biological Availability , CHO Cells , Cell Line , Chemistry, Pharmaceutical/methods , Cricetinae , Drug Stability , Female , Injections, Subcutaneous , Mice , Mice, Inbred BALB C , Nanoparticles/administration & dosage , Pharmaceutical Solutions/administration & dosage , Pharmaceutical Solutions/pharmacokinetics , Proteins/administration & dosage , Proteins/pharmacokinetics , Solutions/administration & dosage , Solutions/chemistry , Solutions/pharmacokinetics , Viscosity
4.
ACS Nano ; 6(2): 1357-69, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22260218

ABSTRACT

Stabilizing proteins at high concentration is of broad interest in drug delivery, for treatment of cancer and many other diseases. Herein, we create highly concentrated antibody dispersions (up to 260 mg/mL) comprising dense equilibrium nanoclusters of protein (monoclonal antibody 1B7, polyclonal sheep immunoglobulin G, and bovine serum albumin) molecules which, upon dilution in vitro or administration in vivo, remain conformationally stable and biologically active. The extremely concentrated environment within the nanoclusters (∼700 mg/mL) provides conformational stability to the protein through a novel self-crowding mechanism, as shown by computer simulation, while the primarily repulsive nanocluster interactions result in colloidally stable, transparent dispersions. The nanoclusters are formed by adding trehalose as a cosolute which strengthens the short-ranged attraction between protein molecules. The protein cluster diameter was reversibly tuned from 50 to 300 nm by balancing short-ranged attraction against long-ranged electrostatic repulsion of weakly charged protein at a pH near the isoelectric point. This behavior is described semiquantitatively with a free energy model which includes the fractal dimension of the clusters. Upon dilution of the dispersion in vitro, the clusters rapidly dissociated into fully active protein monomers as shown with biophysical analysis (SEC, DLS, CD, and SDS-PAGE) and sensitive biological assays. Since the concept of forming nanoclusters by tuning colloid interactions is shown to be general, it is likely applicable to a variety of biological therapeutics, mitigating the need to engineer protein stability through amino acid modification. In vivo subcutaneous injection into mice results in indistinguishable pharmacokinetics versus a standard antibody solution. Stable protein dispersions with low viscosities may potentially enable patient self-administration by subcutaneous injection of antibody therapeutics being discovered and developed.


Subject(s)
Drug Carriers/chemistry , Nanostructures/chemistry , Proteins/chemistry , Animals , Buffers , Cattle , Drug Carriers/pharmacokinetics , Mice , Models, Molecular , Protein Conformation , Protein Stability , Trehalose/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...