Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(12): e22511, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38094046

ABSTRACT

The current research demonstrates the modification of the wetting behavior and mechanical features as well as structure and morphology of Fe3Si films created via facing target sputtering by the rapid thermal annealing (RTA) with the set RTA temperatures (TRTA) of 200, 400, 600, and 800 °C. Following the RTA process, the crystallinity of Fe3Si developed under 400 °C or below. At the 600 °C and 800 °C TRTA, new crystal orientations emerged for FeSi and then ß-FeSi2, respectively. Together with composition results, the Fe3Si films were proven to change into FeSi and then FeSi2 under a high TRTA regime. At temperatures of 600 °C and 800 °C, large crystallites, including the scraggly interface, were observed. The root-mean-square roughness roughened slightly according to the RTA process at TRTA of 600 °C or above. The hydrophobic properties of the Fe3Si film surfaces became hydrophilic after the RTA procedure at a TRTA value above 400 °C. The hardness value of the Fe3Si films evidently increased through RTA at 600 °C and 800 °C. Thus, above 400 °C, the RTA process significantly alters the physical features of as-created Fe3Si films.

2.
J Nanosci Nanotechnol ; 20(8): 5006-5013, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32126691

ABSTRACT

In the present study, indium tin oxide (ITO) nanorod films were produced by usage of ion-assisted electron-beam evaporation with a glancing angle deposition technique. The as-produced ITO nanorod films were annealed in the temperature range of 100-500 °C for two hours in a vacuum atmosphere. The as-produced ITO nanorod films exhibited (222) and (611) preferred orientations from the X-ray diffraction pattern. After vacuum annealing at 500 °C, the ITO nanorod films demonstrated many preferred orientations and the improvement of film crystallinity. The sheet resistance of the as-produced ITO nanorod films was 11.92 Ω/ and was found to be 13.63 Ω/ by annealing at 500 °C. The as-produced and annealed ITO nanorod films had a rod diameter of around 80 nm and transmittance in a visible zone of around 90%. The root mean square roughness of the as-produced ITO nanorod film's surface was 5.49 nm, which increased to 13.77 nm at an annealing temperature of 500 °C. The contact angle of the as-produced ITO nanorod films was 110.9° and increased to 116.5° after annealing at 500 °C.

3.
J Nanosci Nanotechnol ; 20(8): 5075-5081, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32126702

ABSTRACT

In this research, ß-FeSi2 thin films were manufactured onto Si(111) wafer substrates through the usage of radio-frequency magnetron sputtering (RFMS) method at 2.66 × 10-1 Pa of sputtering pressure. The substrate temperatures were varied at 500 °C, 560 °C, and 600 °C. The Raman lines of the ß-FeSi2 fabricated at 500 °C revealed the peaks at the positions of ~174 cm-1, ~189 cm-1, ~199 cm-1, ~243 cm-1, ~278 cm-1, and ~334 cm-1. For the higher substrate temperatures of 560 °C and 600 °C, the Raman peaks of ~189 cm-1, ~243 cm-1, and ~278 cm-1 were shifted toward higher Raman positions. The surface view of the films was observed with several grains over the ß-FeSi2 film surface at all substrate temperatures. The average grain size of the films for the samples deposited at 500 °C and 560 °C was in the range of 28 to 30 nm, where the size was enlarged to 36 nm at 600 °C of substrate temperature. The root mean square roughness were 10.19 nm, 10.84 nm, and 13.67 nm for the ß-FeSi2 film surface prepared at the substrate temperatures of 500 °C, 560 °C, and 600 °C, respectively. The contact angle (CA) values were 99.25°, 99.80°, and 102.00° for the created samples at 500 °C, 560 °C, and 600 °C, respectively. As the acquired CA values, all ß-FeSi2 samples exhibited a hydrophobic property with CA in the range of 90° to 150°. Consequently, the produced ß-FeSi2 film surface employing the RFMS method indicated a potential to be employed in a hydrophobic coating application.

4.
J Nanosci Nanotechnol ; 20(8): 5082-5088, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32126703

ABSTRACT

In the current research, p-type Si/n-type nanocrystalline FeSi2 heterojunctions were fabricated at room temperature with an argon pressure of 2.66×10-1 Pa by means of the utilization of a radiofrequency magnetron sputtering technique. These heterojunctions were studied for the carrier transportation mechanism and near-infrared (NIR) light detection at various temperatures ranging from 300 K down to 150 K. At 300 K, the fabricated heterojunctions displayed a typical rectifying action together with substantial leakage current. At 150 K, the leakage current was clearly reduced by greater than four orders of magnitude. The value of the ideality factor (n) at 300 K was computed to be 1.87 and this was nearly constant under temperatures ranging from 300 down to 260 K. This implies that a recombination process was predominant. At temperatures lower than 250 K, the value of n was found to be more than 2. These results demonstrated that the carrier transportation mechanism was governed by a tunnelling process. A weak response for the irradiation of NIR light was observed at 300 K. At 150 K, the ratio of the photocurrent to the dark current evidently increased by more than two orders of magnitude. The detectivity at 150 K was 4.84×1010 cm Hz1/2 W-1 at zero bias voltage, which was clearly improved as compared to that at 300 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...