Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36676421

ABSTRACT

The paper presents the identification process of the mathematical model parameters of a differential-drive two-wheeled mobile robot. The values of the unknown parameters of the dynamics model were determined by carrying out their identification offline with the Levenberg-Marguardt method and identification online with the Recursive least-squares method. The authors compared the parameters identified by offline and online methods and proposed to support the recursive least squares method with the results obtained by offline identification. The correctness of the identification process of the robot dynamics model parameters, and the operation of the control system was verified by comparing the desired trajectories and those obtained through simulation studies and laboratory tests. Then an analysis of errors defined as the difference between the values of reference position, orientation and velocity, and those obtained from simulations and laboratory tests was carried out. On itd basis, the quality of regulation in the proposed algorithm was determined.

2.
Sensors (Basel) ; 21(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33916275

ABSTRACT

The article presents the possibility of using a graphics tablet to control an industrial robot. The paper presents elements of software development for offline and online control of a robot. The program for the graphic tablet and the operator interface was developed in C# language in Visual Studio environment, while the program controlling the industrial robot was developed in RAPID language in the RobotStudio environment. Thanks to the development of a digital twin of the real robotic workstation, tests were carried out on the correct functioning of the application in offline mode (without using the real robot). The obtained results were verified in online mode (on a real production station). The developed computer programmes have a modular structure, which makes it possible to easily adapt them to one's needs. The application allows for changing the parameters of the robot and the parameters of the path drawing. Tests were carried out on the influence of the sampling frequency and the tool diameter on the quality of the reconstructed trajectory of the industrial robot. The results confirmed the correctness of the application. Thanks to the new method of robot programming, it is possible to quickly modify the path by the operator, without the knowledge of robot programming languages. Further research will focus on analyzing the influence of screen resolution and layout scale on the accuracy of trajectory generation.

3.
Sensors (Basel) ; 20(21)2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33171844

ABSTRACT

The paper presents the possibility of using the Kinect v2 module to control an industrial robot by means of gestures and voice commands. It describes the elements of creating software for off-line and on-line robot control. The application for the Kinect module was developed in the C# language in the Visual Studio environment, while the industrial robot control program was developed in the RAPID language in the RobotStudio environment. The development of a two-threaded application in the RAPID language allowed separating two independent tasks for the IRB120 robot. The main task of the robot is performed in Thread No. 1 (responsible for movement). Simultaneously, Thread No. 2 ensures continuous communication with the Kinect system and provides information about the gesture and voice commands in real time without any interference in Thread No. 1. The applied solution allows the robot to work in industrial conditions without the negative impact of the communication task on the time of the robot's work cycles. Thanks to the development of a digital twin of the real robot station, tests of proper application functioning in off-line mode (without using a real robot) were conducted. The obtained results were verified on-line (on the real test station). Tests of the correctness of gesture recognition were carried out, and the robot recognized all programmed gestures. Another test carried out was the recognition and execution of voice commands. A difference in the time of task completion between the actual and virtual station was noticed; the average difference was 0.67 s. The last test carried out was to examine the impact of interference on the recognition of voice commands. With a 10 dB difference between the command and noise, the recognition of voice commands was equal to 91.43%. The developed computer programs have a modular structure, which enables easy adaptation to process requirements.

4.
Sensors (Basel) ; 20(18)2020 Sep 19.
Article in English | MEDLINE | ID: mdl-32961803

ABSTRACT

The article presents the results of computer simulations related to the selection and optimization of the parameters of robotic packing process of one type of product. Taking the required performance of the robotic production line as a basis, we proposed its configuration using the RobotStudio environment for offline robot programming and virtual controller technology. Next, a methodology for the validation of the adopted assumptions was developed, based on a wide range of input data and a precise representation of the applicable conditions in the packaging process of one type of product. This methodology included test scenarios repeated an appropriate number of times in order to obtain the result data with the desired reliability and repeatability. The main element of the research was a computer simulation of the station based on the Picking PowerPac package. It was assumed that the products on the technological line are generated pseudo-randomly, thus reflecting the real working conditions. The result of the conducted works is the optimal operating speed of industrial robots and conveyors. The developed methodology allows for multifaceted analyses of the key parameters of the technological process (e.g., the number of active robots and their load, speed of conveyors, and station efficiency). We paid special attention to the occurrence of anomalies, i.e., emergency situations in the form of "halting" the operation of chosen robots and their impact on the obtained quality of the industrial process. As a result of the simulations, numerical values were obtained, maximum efficiency, with regard to maximum overflow of items of 5%, for LB algorithm was equal to 1188 completed containers per hour, with conveyors speeds of 270 mm/s and 165 mm/s. This efficiency was possible at robot speeds R1 = 6450 mm/s, R2 = 7500 mm/s, R3 = 6500 mm/s, R4 = 6375 mm/s, R5 = 5500 mm/s, R6 = 7200 mm/s. The ATC algorithm reached efficiency of 1332 containers per hour with less than 5% overflown items, with conveyor speeds of 310 mm/s and 185 mm/s. This efficiency was possible at robot speeds R1 = 7500 mm/s, R2 = 7500 mm/s, R3 = 7200 mm/s, R4 = 7000 mm/s, R5 = 6450 mm/s, R6 = 6300 mm/s. Tests carried out for emergency situations showed that the LB algorithm does not allow for automatic continuation of the process, while the ATC algorithm assured production efficiency of 94% to 98% of the maximum station efficiency.

5.
Sensors (Basel) ; 20(17)2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32858989

ABSTRACT

The most common cause of diseases in swimming pools is the lack of sanitary control of water quality; water may contain microbiological and chemical contaminants. Among the people most at risk of infection are children, pregnant women, and immunocompromised people. The origin of the problem is a need to develop a system that can predict the formation of chlorine water disinfection by-products, such as trihalomethanes (THMs). THMs are volatile organic compounds from the group of alkyl halides, carcinogenic, mutagenic, teratogenic, and bioaccumulating. Long-term exposure, even to low concentrations of THM in water and air, may result in damage to the liver, kidneys, thyroid gland, or nervous system. This article focuses on analysis of the kinetics of swimming pool water reaction in analytical device reproducing its circulation on a small scale. The designed and constructed analytical device is based on the SIMATIC S7-1200 PLC driver of SIEMENS Company. The HMI KPT panel of SIEMENS Company enables monitoring the process and control individual elements of device. Value of the reaction rate constant of free chlorine decomposition gives us qualitative information about water quality, it is also strictly connected to the kinetics of the reaction. Based on the experiment results, the value of reaction rate constant was determined as a linear change of the natural logarithm of free chlorine concentration over time. The experimental value of activation energy based on the directional coefficient is equal to 76.0 [kJ×mol-1]. These results indicate that changing water temperature does not cause any changes in the reaction rate, while it still affects the value of the reaction rate constant. Using the analytical device, it is possible to constantly monitor the values of reaction rate constant and activation energy, which can be used to develop a new way to assess pool water quality.

SELECTION OF CITATIONS
SEARCH DETAIL
...