Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 21(32): 11531-7, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26140629

ABSTRACT

2-(2-Diphenylphosphanylethyl)benzo[de]isoquinoline-1,3-dione is a poorly luminescent, photoinduced-electron-transfer (PET) dyad, NI-(Ph)2 P:, in which the luminescence of its naphthaleneimide (NI) part is quenched by the lone-pair electrons of the phosphorus atom of the (Ph)2 P: group. Photoinduced oxidation of (Ph)2 P: to (Ph)2 P=O by molecular oxygen regenerates the luminescence of the NI group, because the oxidized form (Ph)2 P=O does not serve as a quencher to the NI system. The oxidation of (Ph)2 P: is thermally inaccessible. The NI-(Ph)2 P: system was applied to monitoring the cumulative exposure of oxidation-sensitive goods to molecular oxygen. The major advantage of this new PET system is that it reacts with oxygen only via the photoinduced channel, which offers the flexibility of monitoring the cumulative exposure to oxygen in different time periods, simply by varying the sampling frequency. Electronic-energy calculations and optical spectroscopic data revealed that the luminescence turn-on upon reaction with molecular oxygen relies on a PET mechanism.

2.
Chemistry ; 15(40): 10380-6, 2009 Oct 12.
Article in English | MEDLINE | ID: mdl-19746481

ABSTRACT

Alkylating agents are simple and reactive molecules that are commonly used in many and diverse fields such as organic synthesis, medicine, and agriculture. Some highly reactive alkylating species are also being used as blister chemical-warfare agents. The detection and identification of alkylating agents is not a trivial issue because of their high reactivity and simple structure. Herein, we report on a new multispot luminescence-based approach to the detection and identification of alkylating agents. In order to demonstrate the potential of the approach, seven pi-conjugated oligomers and polymers bearing nucleophilic pyridine groups, 1-7, were adsorbed onto a solid support and exposed to vapors of alkylators 8-15. The alkylation-induced color-shift patterns of the seven-spot array allow clear discrimination of the different alkylators. The spots are sensitive to minute concentrations of alkylators and, because the detection is based on the formation of new covalent bonds, these spots saturate at about 50 ppb.


Subject(s)
Alkylating Agents/chemical synthesis , Models, Molecular , Alkylating Agents/chemistry , Alkylation , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...