Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ind Eng Chem Res ; 57(32): 11141-11153, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30270978

ABSTRACT

Biogas is one of the most popular alternative energy resources to replace fossil fuels. The product of anaerobic fermentation in a digester contains several impurities such as H2S and especially CO2 that needs to be removed in order to upgrade the gas quality. Supported amine sorbents (SAS) might provide an attractive option to remove these impurities. However, little is known about the regeneration of the sorbent. This study evaluates experimentally and by modeling the options for regeneration of the SAS. Theoretically, pressure swing adsorption without purge flow is the most energy efficient method (1.7 MJ/kg CO2). It was found that when using a purge flow the desorption rate is strongly influenced by the equilibrium between the gas and adsorbed phase. With elevated temperature (>80 °C) both the working capacity and the productivity increase significantly. Finally, an energy evaluation for a typical biogas case study is carried out, showing the trade-offs between power consumption, heat demand, and sorbent inventory. Interestingly, at the expense of a somewhat higher power consumption, the use of inexpensive air as purge gas at 60 °C could be an attractive option, but case-specific costs are needed to identify the economic optimum.

2.
Ind Eng Chem Res ; 57(11): 3866-3875, 2018 Mar 21.
Article in English | MEDLINE | ID: mdl-29606794

ABSTRACT

Currently there are significant amounts of natural gas that cannot be produced and treated to meet pipeline specifications, because that would not be economically viable. This work investigates a bench scale multistage fluidized bed (MSFB) with shallow beds for sour gas removal from natural gas using a commercially available supported amine sorbent. A MSFB is regarded as a promising adsorber type for deep sour gas removal to parts per million concentrations. A series of experiments was conducted using carbon dioxide as sour gas and nitrogen to mimic natural gas. Removal below 3 mol ppm was successfully demonstrated. This indicates that gas bypassing is minor (that is, good gas-solid contacting) and that apparent adsorption kinetics are fast for the amine sorbent applied. Tray efficiencies for a chemisorption/adsorption system were reported for one of the first times. Current experiments performed at atmospheric pressure strongly indicate that deep removal is possible at higher pressures in a multistage fluidized bed.

3.
Biosci Biotechnol Biochem ; 69(5): 932-8, 2005 May.
Article in English | MEDLINE | ID: mdl-15914912

ABSTRACT

The addition of a compound that lowers the intestinal uptake of fat and cholesterol might be an interesting strategy to reduce the risk of vascular disease. Partially hydrolyzed guar gum (PHGG) has been shown to have this effect in healthy volunteers after intake of a yogurt drink with 3 to 6% PHGG. In the present study a yogurt drink with 3% sunflower oil and 4% egg yolk was tested with 3% and 6% PHGG, and compared to a control without PHGG. Experiments were performed in a multi-compartmental model of the gastrointestinal tract, equipped to study the digestion and availability for absorption (bioaccessibility) of lipids. The results show that PHGG decreases the bioaccessibility of both fat and cholesterol in a dose-dependent manner. The bioaccessibility of fat was 79.4+/-1.7%, 70.8+/-2.5% and 60.1+/-1.1% for the control experiments and the experiments with 3% and 6% PHGG respectively. The bioaccessibility of cholesterol was 82.2+/-2.0%, 75.4+/-1.2% and 64.0+/-4.3% for the control and the experiments with 3% and 6% PHGG respectively. Additional experiments indicated that PHGG reduces bioaccessibility through the depletion flocculation mechanism. Depletion flocculation antagonizes the emulsification by bile salts and thus decreases lipolytic activity, resulting in a lower bioaccessibility of fat and cholesterol. Depletion flocculation with polymers might be an interesting mechanism, not described before, to reduce fat and cholesterol absorption.


Subject(s)
Cholesterol, Dietary/analysis , Dietary Fats/analysis , Galactans/pharmacology , Mannans/pharmacology , Models, Biological , Bile , Galactans/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Intestinal Absorption/drug effects , Mannans/chemistry , Micelles , Nutritive Value , Pepsin A , Plant Gums , Plant Oils , Sunflower Oil , Time Factors , Yogurt
4.
Langmuir ; 21(9): 4083-9, 2005 Apr 26.
Article in English | MEDLINE | ID: mdl-15835978

ABSTRACT

The relation between mechanical film properties of various adsorbed protein layers at the air/water interface and intrinsic stability of the corresponding proteins is discussed. Mechanical film properties were determined by surface deformation in shear and dilation. In shear, fracture stress, sigma(f), and fracture strain, gamma(f), were determined, as well as the relaxation behavior after macroscopic fracture. The dilatational measurements were performed in a Langmuir trough equipped with an infra-red reflection absorption spectroscopy (IRRAS) accessory. During compression and relaxation of the surface, the surface pressure, Pi, and adsorbed amount, Gamma (determined from the IRRAS spectra), were determined simultaneously. In addition, IRRAS spectra revealed information on conformational changes in terms of secondary structure. Possible correlations between macroscopic film properties and intrinsic stability of the proteins were determined and discussed in terms of molecular dimensions of single proteins and interfacial protein films. Molecular properties involved the area per protein molecule at Pi approximately 0 mN/m (A(0)), A(0)/M (M = molecular weight) and the maximum slope of the Pi-Gamma curves (dPi/dGamma). The differences observed in mechanical properties and relaxation behavior indicate that the behavior of a protein film subjected to large deformation may vary widely from predominantly viscous (yielding) to more elastic (fracture). This transition is also observed in gradual changes in A(0)/M. It appeared that in general protein layers with high A(0)/M have a high gamma(f) and behave more fluidlike, whereas solidlike behavior is characterized by low A(0)/M and low gamma(f). Additionally, proteins with a low A(0)/M value have a low adaptability in changing their conformation upon adsorption at the air/water interface. Both results support the conclusion that the hardness (internal cohesion) of protein molecules determines predominantly the mechanical behavior of adsorbed protein layers.


Subject(s)
Air , Proteins/chemistry , Spectrophotometry, Infrared/methods , Water , Adsorption , Biomechanical Phenomena , Elasticity , Protein Denaturation , Surface Properties , Time Factors , Viscosity
5.
J Colloid Interface Sci ; 254(1): 175-83, 2002 Oct 01.
Article in English | MEDLINE | ID: mdl-12702439

ABSTRACT

A series of proteins was studied with respect to their ability to form a network at the air/water interface and their suitability as foaming agents and foam stabilizers. Proteins were chosen with a range of structures from flexible to rigid/globular: beta-casein, beta-lactoglobulin, ovalbumin, and (soy) glycinin. Experiments were performed at neutral pH except for glycinin, which was studied at both pH 3 and pH 6.7. The adsorption process was followed with an automated drop tensiometer (ADT). Network forming properties were assessed in terms of surface dilational modulus (determined with the ADT), the critical falling film length (L(still)) and flow rate (Q(still)) below which a stagnant film exists (as measured with the overflowing cylinder technique), and the fracture stress and fracture strain measured in surface shear. It was found that glycinin (pH 3) can form an interfacial gel in a very short time, whereas beta-casein has very poor network-forming properties. Hardly any foam could be produced at the chosen conditions with glycinin (pH 6.7) and with ovalbumin, whereas beta-casein, beta-lactoglobulin, and glycinin (pH 3) were good foaming agents. It seems that adsorption and unfolding rate are most important for foam formation. Once the foam is formed, a rigid network might favor stabilizing the foam.


Subject(s)
Air , Excipients/chemistry , Proteins/chemistry , Water/chemistry , Adsorption , Rheology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...