Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 237: 115498, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37423065

ABSTRACT

Surface plasmon polaritons in graphene can enhance the performance of mid-infrared spectroscopy, which is key for the study of both the composition and the conformation of organic molecules via their vibrational resonances. In this paper, a plasmonic biosensor using a graphene-based van der Waals heterostructure on a piezoelectric substrate is theoretically demonstrated, where far-field light is coupled to surface plasmon-phonon polaritons (SPPPs) through a surface acoustic wave (SAW). The SAW creates an electrically-controlled virtual diffraction grating, suppressing the need for patterning the 2D materials, that limits the polariton lifetime, and enabling differential measurement schemes, which increase the signal-to-noise ratio and allow a quick commutation between reference and sample signals. A transfer matrix method has been used for simulating the SPPPs propagating in the system, which are electrically tuned to interact with the vibrational resonances of the analytes. Furthermore, the analysis of the sensor response with a coupled oscillators model has proven its capability of fingerprinting ultrathin biolayers, even when the interaction is too weak to induce a Fano interference pattern, with a sensitivity down to the monolayer limit, as tested with a protein bilayer or a peptide monolayer. The proposed device paves the way for the development of advanced SAW-assisted lab-on-chip systems combining the existing SAW-mediated physical sensing and microfluidic functionalities with the chemical fingerprinting capability of this novel SAW-driven plasmonic approach.


Subject(s)
Biosensing Techniques , Graphite , Sound , Electricity , Acoustics
2.
Adv Biol (Weinh) ; 5(11): e2100882, 2021 11.
Article in English | MEDLINE | ID: mdl-34590442

ABSTRACT

The interaction of two types of fragmented graphene particles (30-160 nm) with human macrophages is studied. Since macrophages have significant phagocytic activity, the incorporation of graphene particles into cells has an effect on the response to functional polarization stimuli, favoring an anti-inflammatory profile. Incubation of macrophages with graphene foam particles, prepared by chemical vapor deposition, and commercially available graphene nanoplatelet particles does not affect cell viability when added at concentrations up to 100 µg mL-1 ; macrophages exhibit differential quantitative responses to each type of graphene particles. Although both materials elicit similar increases in the release of reactive oxygen species, the impact on the transcriptional regulation associated with the polarization profile is different; graphene nanoplatelets significantly modify this transcriptomic profile. Moreover, these graphene particles differentially affect the motility and phagocytosis of macrophages. After the incorporation of both graphene types into the macrophages, they exhibit specific responses in terms of the mitochondrial oxygen consumption and electrophysiological potassium currents at the cell plasma membrane. These data support the view that the physical structure of the graphene particles has an impact on human macrophage responses, paving the way for the development of new mechanisms to modulate the activity of the immune system.


Subject(s)
Graphite , Cell Survival , Humans , Macrophages , Phagocytosis , Reactive Oxygen Species
3.
Nano Lett ; 20(1): 402-409, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31790600

ABSTRACT

We experimentally demonstrate that the Raman-active optical phonon modes of single-layer graphene can be modulated by the dynamic local strain created by surface acoustic waves (SAWs). In particular, the dynamic strain field of the SAW is shown to induce a Raman scattering intensity variation as large as 15% and a phonon frequency shift of up to 10 cm-1 for the G band, for instance, for an effective hydrostatic strain of 0.24% generated in single-layer graphene atop a LiNbO3 piezoelectric substrate with a SAW resonator operating at a frequency of ∼400 MHz. Thus, we demonstrate that SAWs are powerful tools for modulating the optical and vibrational properties of supported graphene by means of the high-frequency localized deformations tailored by the acoustic transducers, which can also be extended to other 2D systems.

4.
Micromachines (Basel) ; 10(6)2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31212971

ABSTRACT

New architectures of transparent conductive electrodes (TCEs) incorporating graphene monolayers in different configurations have been explored with the aim to improve the performance of silicon-heterojunction (SHJ) cell front transparent contacts. In SHJ technology, front electrodes play an important additional role as anti-reflectance (AR) coatings. In this work, different transparent-conductive-oxide (TCO) thin films have been combined with graphene monolayers in different configurations, yielding advanced transparent electrodes specifically designed to minimize surface reflection over a wide range of wavelengths and angles of incidence and to improve electrical performance. A preliminary analysis reveals a strong dependence of the optoelectronic properties of the TCEs on (i) the order in which the different thin films are deposited or the graphene is transferred and (ii) the specific TCO material used. The results shows a clear electrical improvement when three graphene monolayers are placed on top on 80-nm-thick ITO thin film. This optimum TCE presents sheet resistances as low as 55 Ω/sq and an average conductance as high as 13.12 mS. In addition, the spectral reflectance of this TCE also shows an important reduction in its weighted reflectance value of 2-3%. Hence, the work undergone so far clearly suggests the possibility to noticeably improve transparent electrodes with this approach and therefore to further enhance silicon-heterojunction cell performance. These results achieved so far clearly open the possibility to noticeably improve TCEs and therefore to further enhance SHJ contact-technology performance.

5.
Sci Rep ; 6: 21676, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26860260

ABSTRACT

In most applications based on chemical vapor deposition (CVD) graphene, the transfer from the growth to the target substrate is a critical step for the final device performance. Manual procedures are time consuming and depend on handling skills, whereas existing automatic roll-to-roll methods work well for flexible substrates but tend to induce mechanical damage in rigid ones. A new system that automatically transfers CVD graphene to an arbitrary target substrate has been developed. The process is based on the all-fluidic manipulation of the graphene to avoid mechanical damage, strain and contamination, and on the combination of capillary action and electrostatic repulsion between the graphene and its container to ensure a centered sample on top of the target substrate. The improved carrier mobility and yield of the automatically transferred graphene, as compared to that manually transferred, is demonstrated by the optical and electrical characterization of field-effect transistors fabricated on both materials. In particular, 70% higher mobility values, with a 30% decrease in the unintentional doping and a 10% strain reduction are achieved. The system has been developed for lab-scale transfer and proved to be scalable for industrial applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...