Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech Eng ; 143(6)2021 06 01.
Article in English | MEDLINE | ID: mdl-33543246

ABSTRACT

Though energy attenuating (EA) seats for air and spacecraft applications have existed for decades, they have not yet been fully characterized for their energy attenuation capability or resulting effect on occupant protection in vertical underbody blast. EA seats utilize stroking mechanisms to absorb energy and reduce the vertical forces imparted on the occupant's pelvis and lower spine. Using dynamic rigid-body modeling, a virtual tool to determine optimal force and deflection limits was developed to reduce pelvis and lower spine injuries in underbody blast events using a generic seat model. The tool consists of a mathematical dynamic model (MADYMO)-modified human body model (HBM), basic EA seat model, and an optimizing sequence using modefrontier software. This optimizing tool may be shared with EA seat manufacturers and applied to military seat development efforts for EA mechanisms for a given occupant and designated blast severity. To optimally tune the EA seat response, the MADYMO human body model was first updated to improve its fidelity in kinematic response data for high rate vertical accelerative loading relative to experimental data from laboratory simulated underbody blast tests using postmortem human surrogates (PMHS). Subsequently, using available injury criteria for underbody blast, the optimization tool demonstrated the ability to identify successful EA mechanism critical design value configurations to reduce forces and accelerations in the pelvis and lower spine HBM to presumed noninjurious levels. This tool could be tailored by varying input pulses, force and deflection limits, and occupant size to evaluate EA mechanism designs.


Subject(s)
Explosions
2.
Stapp Car Crash J ; 60: 199-246, 2016 11.
Article in English | MEDLINE | ID: mdl-27871099

ABSTRACT

Three laboratory simulated sub-injurious under-body blast (UBB) test conditions were conducted with whole-body Post Mortem Human Surrogates (PMHS) and the Warrior Assessment Injury Manikin (WIAMan) Technology Demonstrator (TD) to establish and assess UBB biofidelity of the WIAMan TD. Test conditions included a rigid floor and rigid seat with independently varied pulses. On the floor, peak velocities of 4 m/s and 6 m/s were applied with a 5 ms time to peak (TTP). The seat peak velocity was 4 m/s with varied TTP of 5 and 10 ms. Tests were conducted with and without personal protective equipment (PPE). PMHS response data was compiled into preliminary biofidelity response corridors (BRCs), which served as evaluation metrics for the WIAMan TD. Each WIAMan TD response was evaluated against the PMHS preliminary BRC for the loading and unloading phase of the signal time history using Correlation Analysis (CORA) software to assign a numerical score between 0 and 1. A weighted average of all responses was calculated to determine body region and whole body biofidelity scores for each test condition. The WIAMan TD received UBB biofidelity scores of 0.62 in Condition A, 0.59 in Condition B, and 0.63 in Condition C, putting it in the fair category (0.44-0.65). Body region responses with scores below a rating of good (0.65-0.84) indicate potential focus areas for the next generation of the WIAMan design.


Subject(s)
Cadaver , Explosions , Manikins , Acceleration , Biomechanical Phenomena , Humans , Male , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...