Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Struct Dyn ; 9(1): 014502, 2022 Jan.
Article in English | MEDLINE | ID: mdl-38143930

ABSTRACT

We use ultrafast electron diffraction to study the out-of-equilibrium dynamics of the charge density wave (CDW) phase transition in GdTe3, a quasi-two-dimensional compound displaying a unidirectional CDW state. Experiments were conducted at different incident fluences and different initial sample temperatures below Tc. We find that following photo-excitation, the system undergoes a non-thermal ultrafast phase transition that occurs in out-of-equilibrium conditions. The intrinsic crystal temperature was estimated at each time delay from the atomic thermal motion, which affects each Bragg peak intensity via the Debye Waller factor. We find that the crystal temperature stabilizes with a 6 ps timescale in a quasi-equilibrium state at temperature Tq.e.. We then relate the recovery time of the CDW and its correlation lengths as a function of Tq.e.. The charge density wave is suppressed in less than a picosecond while its recovery time increases linearly with incident fluence and initial temperature. Our results highlight that the dynamics is strongly determined by the initial sample temperature. In addition, the transient CDW phase recently observed along the transverse direction in LaTe3 and CeTe3 is not observed in GdTe3.

3.
Nat Commun ; 8: 13917, 2017 01 09.
Article in English | MEDLINE | ID: mdl-28067228

ABSTRACT

The study of photoexcited strongly correlated materials is attracting growing interest since their rich phase diagram often translates into an equally rich out-of-equilibrium behaviour. With femtosecond optical pulses, electronic and lattice degrees of freedom can be transiently decoupled, giving the opportunity of stabilizing new states inaccessible by quasi-adiabatic pathways. Here we show that the prototype Mott-Hubbard material V2O3 presents a transient non-thermal phase developing immediately after ultrafast photoexcitation and lasting few picoseconds. For both the insulating and the metallic phase, the formation of the transient configuration is triggered by the excitation of electrons into the bonding a1g orbital, and is then stabilized by a lattice distortion characterized by a hardening of the A1g coherent phonon, in stark contrast with the softening observed upon heating. Our results show the importance of selective electron-lattice interplay for the ultrafast control of material parameters, and are relevant for the optical manipulation of strongly correlated systems.

4.
Article in English | MEDLINE | ID: mdl-26737720

ABSTRACT

Celiac Disease (CD) is an immune-mediated enteropathy, diagnosed in the clinical practice by intestinal biopsy and the concomitant presence of a positive celiac serology. Confocal Laser Endomicroscopy (CLE) allows skilled and trained experts to potentially perform in vivo virtual histology of small-bowel mucosa. In particular, it allows the qualitative evaluation of mucosa alteration such as a decrease in goblet cells density, presence of villous atrophy or crypt hypertrophy. We present a semi-automatic computer-based method for the detection of goblet cells from confocal endoscopy images, whose density changes in case of pathological tissue. After a manual selection of a suitable region of interest, the candidate columnar and goblet cells' centers are first detected and the cellular architecture is estimated from their position using a Voronoi diagram. The region within each Voronoi cell is then analyzed and classified as goblet cell or other. The results suggest that our method is able to detect and label goblet cells immersed in a columnar epithelium in a fast, reliable and automatic way. Accepting 0.44 false positives per image, we obtain a sensitivity value of 90.3%. Furthermore, estimated and real goblet cell densities are comparable (error: 9.7 ± 16.9%, correlation: 87.2%, R(2) = 76%).


Subject(s)
Celiac Disease/diagnosis , Endoscopy, Gastrointestinal , Goblet Cells/cytology , Area Under Curve , Celiac Disease/pathology , Duodenum/pathology , Humans , ROC Curve , Regression Analysis
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 8143-6, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26738184

ABSTRACT

Celiac Disease (CD) is an immune-mediated enteropathy, diagnosed in the clinical practice by intestinal biopsy and the concomitant presence of a positive celiac serology. Confocal Laser Endomicroscopy (CLE) allows skilled and trained experts to potentially perform in vivo virtual histology of small-bowel mucosa. In particular, it allows the qualitative evaluation of mucosa alteration such as a decrease in goblet cells density, presence of villous atrophy or crypt hypertrophy. We present a semi-automatic method for villi detection from confocal endoscopy images, whose appearance change in case of villous atrophy. Starting from a set of manual seeds, a first rough segmentation of the villi is obtained by means of mathematical morphology operations. A merge and split procedure is then performed, to ensure that each seed originates a different region in the final segmentation. A border refinement process is finally performed, evolving the shape of each region according to local gradient intensities. Mean and median Dice coefficients for 290 villi originating from 66 images when compared to manually obtained ground truth are 80.71% and 87.96% respectively.


Subject(s)
Celiac Disease/diagnostic imaging , Endoscopy, Gastrointestinal , Biopsy , Duodenum , Humans , Intestinal Mucosa , Microscopy, Confocal
6.
Nat Commun ; 5: 3003, 2014.
Article in English | MEDLINE | ID: mdl-24389793

ABSTRACT

The advent of Dirac materials has made it possible to realize two-dimensional gases of relativistic fermions with unprecedented transport properties in condensed matter. Their photoconductive control with ultrafast light pulses is opening new perspectives for the transmission of current and information. Here we show that the interplay of surface and bulk transient carrier dynamics in a photoexcited topological insulator can control an essential parameter for photoconductivity-the balance between excess electrons and holes in the Dirac cone. This can result in a strongly out of equilibrium gas of hot relativistic fermions, characterized by a surprisingly long lifetime of more than 50 ps, and a simultaneous transient shift of chemical potential by as much as 100 meV. The unique properties of this transient Dirac cone make it possible to tune with ultrafast light pulses a relativistic nanoscale Schottky barrier, in a way that is impossible with conventional optoelectronic materials.

7.
Nano Lett ; 12(7): 3532-6, 2012 Jul 11.
Article in English | MEDLINE | ID: mdl-22658088

ABSTRACT

We discuss the ultrafast evolution of the surface electronic structure of the topological insulator Bi(2)Te(3) following a femtosecond laser excitation. Using time and angle-resolved photoelectron spectroscopy, we provide a direct real-time visualization of the transient carrier population of both the surface states and the bulk conduction band. We find that the thermalization of the surface states is initially determined by interband scattering from the bulk conduction band, lasting for about 0.5 ps; subsequently, few picoseconds are necessary for the Dirac cone nonequilibrium electrons to recover a Fermi-Dirac distribution, while their relaxation extends over more than 10 ps. The surface sensitivity of our measurements makes it possible to estimate the range of the bulk-surface interband scattering channel, indicating that the process is effective over a distance of 5 nm or less. This establishes a correlation between the nanoscale thickness of the bulk charge reservoir and the evolution of the ultrafast carrier dynamics in the surface Dirac cone.

8.
Phys Rev Lett ; 100(2): 027404, 2008 Jan 18.
Article in English | MEDLINE | ID: mdl-18232923

ABSTRACT

Subtle atomic motion in a Bi crystal excited by a 35 fs-laser pulse has been recovered from the transient reflectivity of an optical probe measured with an accuracy of 10(-5). Analysis shows that a novel effect reported here-an initial negative drop in reflectivity-relates to a delicate coherent displacement of atoms by the polarization force during the pulse. We also show that reflectivity oscillations with a frequency coinciding with that of cold Bi are related to optical phonons excited by the electron temperature gradient through electron-phonon coupling.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(4 Pt 2): 045401, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17155123

ABSTRACT

We observe Fresnel edge diffraction of the x-ray beam generated by the relativistic interaction of a high-intensity laser pulse with He gas. The observed diffraction at center energy 4.5 keV agrees with Gaussian incoherent source profile of full-width-half-maximum (FWHM) < 8 microm. Analysis indicates this corresponds to an upper limit on the transverse profile of laser-accelerated electrons within the plasma in agreement with three-dimensional, particle-in-cell results (FWHM = 4 microm).

SELECTION OF CITATIONS
SEARCH DETAIL
...