Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 15485, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32968089

ABSTRACT

Mutations in PRKN are the most common cause of early onset Parkinson's disease. Parkin is an E3 ubiquitin ligase, functioning in mitophagy. Mitochondrial abnormalities are present in PRKN mutant models. Patient derived neurons are a promising model in which to study pathogenic mechanisms and therapeutic targets. Here we generate induced neuronal progenitor cells from PRKN mutant patient fibroblasts with a high dopaminergic neuron yield. We reveal changing mitochondrial phenotypes as neurons undergo a metabolic switch during differentiation. Fibroblasts from 4 controls and 4 PRKN mutant patients were transformed into induced neuronal progenitor cells and subsequently differentiated into dopaminergic neurons. Mitochondrial morphology, function and mitophagy were evaluated using live cell fluorescent imaging, cellular ATP and reactive oxygen species production quantification. Direct conversion of control and PRKN mutant patient fibroblasts results in induced neuronal progenitor and their differentiation yields high percentage of dopaminergic neurons. We were able to observe changing mitochondrial phenotypes as neurons undergo a metabolic switch during differentiation. Our results show that when pre-neurons are glycolytic early in differentiation mitophagy is unimpaired by PRKN deficiency. However as neurons become oxidative phosphorylation dependent, mitophagy is severely impaired in the PRKN mutant patient neurons. These changes correlate with changes in mitochondrial function and morphology; resulting in lower neuron yield and altered neuronal morphology. Induced neuronal progenitor cell conversion can produce a high yield of dopaminergic neurons. The mitochondrial phenotype, including mitophagy status, is highly dependent on the metabolic status of the cell. Only when neurons are oxidative phosphorylation reliant the extent of mitochondrial abnormalities are identified. These data provide insight into cell specific effects of PRKN mutations, in particular in relation to mitophagy dependent disease phenotypes and provide avenues for alternative therapeutic approaches.


Subject(s)
Dopaminergic Neurons/metabolism , Mitophagy , Oxidation-Reduction , Ubiquitin-Protein Ligases/genetics , Adult , Cell Death , Chromans/pharmacology , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/ultrastructure , Female , Humans , Male , Middle Aged , Mitochondria/genetics , Mitochondria/metabolism , Optical Imaging , Oxidation-Reduction/drug effects , Parkinson Disease/genetics , Parkinson Disease/metabolism , Ubiquitin-Protein Ligases/physiology
2.
Brain ; 142(12): 3771-3790, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31647549

ABSTRACT

It is important to understand how the disease process affects the metabolic pathways in amyotrophic lateral sclerosis and whether these pathways can be manipulated to ameliorate disease progression. To analyse the basis of the metabolic defect in amyotrophic lateral sclerosis we used a phenotypic metabolic profiling approach. Using fibroblasts and reprogrammed induced astrocytes from C9orf72 and sporadic amyotrophic lateral sclerosis cases we measured the production rate of reduced nicotinamide adenine dinucleotides (NADH) from 91 potential energy substrates simultaneously. Our screening approach identified that C9orf72 and sporadic amyotrophic lateral sclerosis induced astrocytes have distinct metabolic profiles compared to controls and displayed a loss of metabolic flexibility that was not observed in fibroblast models. This loss of metabolic flexibility, involving defects in adenosine, fructose and glycogen metabolism, as well as disruptions in the membrane transport of mitochondrial specific energy substrates, contributed to increased starvation induced toxicity in C9orf72 induced astrocytes. A reduction in glycogen metabolism was attributed to loss of glycogen phosphorylase and phosphoglucomutase at the protein level in both C9orf72 induced astrocytes and induced neurons. In addition, we found alterations in the levels of fructose metabolism enzymes and a reduction in the methylglyoxal removal enzyme GLO1 in both C9orf72 and sporadic models of disease. Our data show that metabolic flexibility is important in the CNS in times of bioenergetic stress.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Astrocytes/metabolism , C9orf72 Protein/metabolism , Mitochondria/metabolism , Motor Neurons/metabolism , Adult , Aged , Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , Disease Progression , Energy Metabolism , Female , Glycogen Phosphorylase/metabolism , Humans , Male , Middle Aged
3.
Neuroscience ; 386: 137-149, 2018 08 21.
Article in English | MEDLINE | ID: mdl-29964155

ABSTRACT

The Engrailed-2 (En2) gene codes for a homeobox-containing transcription factor, involved in midbrain-hindbrain embryonic development. In postnatal brain, En2 is expressed in the ventral mesencephalon, cerebellum, hippocampus and neocortex. Two single-nucleotide polymorphisms (SNPs) that are associated to autism spectrum disorders (ASD) have been identified in the human EN2 gene. Accordingly, mice lacking the En2 homeodomain (En2hd/hd, referred to as En2-/-) show molecular, anatomical and behavioral "ASD-like" features. Among these, we previously showed a partial loss of GABAergic interneurons in the En2-/- postnatal hippocampus and neocortex, accompanied by a marked decrease of brain-derived neurotrophic factor (BDNF) signaling, a crucial determinant of GABAergic differentiation. In order to better investigate the role of En2 in GABAergic interneuron differentiation, we generated and subsequently differentiated neural stem cells (NSCs) from basal ganglia and neocortex of En2+/+ and En2-/- mouse embryos. Wild-type NSCs from both basal ganglia and neocortex express En2, while mutant ones do not, as expected. As compared to En2+/+ NSCs, En2-/- NSCs derived from basal ganglia show impaired GABAergic differentiation accompanied by a reduced expression of the BDNF receptor trkB. Conversely, En2-/- NSCs derived from the neocortex expressed high levels of trkB and readily differentiated into neurons, as En2+/+ NSCs. Our results suggest that En2 contributes to GABAergic neuron differentiation from basal ganglia NSCs through a trkB-dependent BDNF signaling, thus providing a possible explanation for the reduced number of GABAergic interneurons detected in the En2-/- postnatal forebrain.


Subject(s)
Basal Ganglia/metabolism , Cell Differentiation/physiology , GABAergic Neurons/metabolism , Nerve Tissue Proteins/deficiency , Neural Stem Cells/metabolism , Animals , Female , Homeodomain Proteins/genetics , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...