Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 131: 63-70, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25769113

ABSTRACT

The persistence of synthetic cyclohexyl- and norbornyl-derived ketones was assessed by using OECD 301F and 301D biodegradation tests. While cyclohexyl-derived ketones either reached or came close to the pass level (60%) after 60 d, the corresponding norbornyl derivatives yielded significantly less biodegradation (<40%). By analyzing extracts at 60 d, the key degradation products of four norbornyl derivatives were identified. Consistently, 2-bicyclo[2.2.1]heptane carboxylic acid was found as a principal degradation product with minor quantities of bicyclo[2.2.1]heptan-2-one and 2-bicyclo[2.2.1]heptane acetic acid. When the three degradation products were re-synthesized and tested individually for biodegradability, the former two were found to be ultimately biodegradable after 60 d in OECD 301D tests, thus proving non-persistence. Similarly, 2-bicyclo[2.2.1]heptane acetic acid was found to be degraded significantly, albeit with long lag phases exceeding 60 d in the case of freshwater inoculum, then ultimately reaching the pass level. On the other hand, norbornyl ketones were still only partially biodegradable in the same test. We conclude that despite the potential for ultimate biodegradation of norbornyl-derived ketones, current screening tests yield an incomplete picture of their biodegradability, particularly when applying strict OECD criteria. The appearance of long lag phases when re-testing norbornyl ketone degradation products underlines the importance of extending tests to well beyond 28 and even 60 d in the case of freshwater inocula.


Subject(s)
Bridged Bicyclo Compounds/analysis , Cyclohexanones/analysis , Norbornanes/analysis , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Bridged Bicyclo Compounds/chemistry , Cyclohexanones/chemistry , Fresh Water/chemistry , Ketones/analysis , Ketones/chemistry , Models, Theoretical , Molecular Structure , Norbornanes/chemistry , Organisation for Economic Co-Operation and Development , Sewage/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry
2.
Environ Sci Pollut Res Int ; 21(16): 9487-94, 2014.
Article in English | MEDLINE | ID: mdl-24277432

ABSTRACT

The degradation of Romandolide ([1-(3',3'-dimethyl-1'-cyclohexyl)ethoxycarbonyl] methyl propanoate), a synthetic alicyclic musk, by activated sludge inocula was investigated using both the manometric respirometry test OECD 301F and the CO2 evolution test. In addition to measuring its biodegradability, key steps of the upper part of the metabolic pathway responsible for Romandolide degradation were identified using extracts at different time points of incubation. Early metabolism of Romandolide yielded ester hydrolysis products, including Cyclademol (1-(3,3-dimethylcyclohexyl)ethanol). The principal metabolites after 31 days were identified as 3,3-dimethyl cyclohexanone and 3,3-dimethyl cyclohexyl acetate. Formation of 3,3-dimethyl cyclohexanone from Cyclademol by sludge was confirmed in subsequent experiments using Cyclademol as a substrate, indicating the involvement of an oxygen insertion reminiscent of a Baeyer-Villiger oxidation. Further mineralization of 3,3-dimethyl cyclohexanone was also confirmed in subsequent studies. Three steps were thus required for complete biodegradation of the alicyclic musk: (1) successive ester hydrolyses leading to the formation of Cyclademol with concomitant degradation of the resulting acids, (2) conversion of Cyclademol into 3,3-dimethyl cyclohexanone, and (3) further mineralization via ring cleavage.


Subject(s)
Biodegradation, Environmental , Perfume/chemistry , Sewage/chemistry , Water Pollutants, Chemical/chemistry , Acetates , Molecular Structure , Oxidation-Reduction , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...