Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biomater ; 2024: 7949258, 2024.
Article in English | MEDLINE | ID: mdl-38577240

ABSTRACT

Meat is a widely consumed food globally; however, variations in storage conditions along its supply chain can pose a potential food safety risk for consumers. Addressing this concern, we have developed freshness indicators designed to monitor the condition of packaged chicken. In this study, anthocyanins were infused with cellulose paper measuring 2 × 2 cm, and subsequent analysis focused on examining color changes concerning deteriorating chicken stored at 30°C for 48 h, with varying sample sizes being considered. The rise in total volatile nitrogen (TVB-N) compounds from an initial value of 3.64 ± 0.39 mg/100 g to 28.17 ± 1.46 mg/100 g acted as the stimulus for the color change in the indicator, simultaneously influencing the pH from the initial 7.03 ± 0.16 to 8.12 ± 0.39. The microbial load (aerobic plate count) of the chicken samples was also significantly increased. This collective shift in various parameters strongly suggests the occurrence of spoilage in chicken meat. The pH indicators exhibited a dark pink to red color for fresh chicken. As the chicken meat turned towards spoilage, the indicators changed to a dark blue and then a pale green color. FTIR spectroscopy results confirmed the presence of cellulose and anthocyanins. The FTIR analysis also validated the immobilization of plum anthocyanins within the cellulose paper and assessed their stability after 8 months of storage. Notably, the indicators demonstrated rapid sensitivity, showing a 20.5% response within one minute of ammonia exposure, which further increased to 29.5% after 3 min of exposure. The total color difference (ΔE) steadily rose in all the examined samples and also under various storage conditions. Overall, the indicators developed in this study exhibited a highly pronounced color transition, capable of distinguishing between fresh and spoiled chicken samples depending on the extent of spoilage and the specific day of observation.

2.
Materials (Basel) ; 16(13)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37445154

ABSTRACT

Environmental concerns regarding the usage of nonrenewable materials are driving up the demand for biodegradable marine biopolymers. Marine biopolymers are gaining increasing attention as sustainable alternatives in various industries, including the food sector. This review article aims to provide a comprehensive overview of marine biopolymers and their applications in the food industry. Marine sources are given attention as innovative resources for the production of sea-originated biopolymers, such as agar, alginate, chitin/chitosan, and carrageenan, which are safe, biodegradable, and are widely employed in a broad spectrum of industrial uses. This article begins by discussing the diverse source materials of marine biopolymers, which encompass biopolymers derived from seaweed and marine animals. It explores the unique characteristics and properties of these biopolymers, highlighting their potential for food applications. Furthermore, this review presents a classification of marine biopolymers, categorizing them based on their chemical composition and structural properties. This classification provides a framework for understanding the versatility and functionality of different marine biopolymers in food systems. This article also delves into the various food applications of marine biopolymers across different sectors, including meat, milk products, fruits, and vegetables. Thus, the motive of this review article is to offer a brief outline of (a) the source materials of marine biopolymers, which incorporates marine biopolymers derived from seaweed and marine animals, (b) a marine biopolymer classification, and (c) the various food applications in different food systems such as meat, milk products, fruits, and vegetables.

3.
Foods ; 12(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37297448

ABSTRACT

Anthocyanins, the colored water-soluble pigments, have increasingly drawn the attention of researchers for their novel applications. The sources of anthocyanin are highly diverse, and it can be easily extracted. The unique biodiversity of the Himalayan Mountain range is an excellent source of anthocyanin, but it is not completely explored. Numerous attempts have been made to study the phytochemical aspects of different Himalayan plants. The distinct flora of the Himalayas can serve as a potential source of anthocyanins for the food industry. In this context, this review is an overview of the phytochemical studies conducted on Himalayan plants for the estimation of anthocyanins. For that, many articles have been studied to conclude that plants (such as Berberis asiatica, Morus alba, Ficus palmata, Begonia xanthina, Begonia palmata, Fragaria nubicola, etc.) contain significant amounts of anthocyanin. The application of Himalayan anthocyanin in nutraceuticals, food colorants, and intelligent packaging films have also been briefly debated. This review creates a path for further research on Himalayan plants as a potential source of anthocyanins and their sustainable utilization in the food systems.

4.
Antibiotics (Basel) ; 12(6)2023 May 26.
Article in English | MEDLINE | ID: mdl-37370286

ABSTRACT

Food waste is key global problem and more than 90% of the leftover waste produced by food packaging factories is dumped in landfills. Foods packaged using eco-friendly materials have a longer shelf life as a result of the increased need for high-quality and secure packaging materials. For packaging purposes, natural foundation materials are required, as well as active substances that can prolong the freshness of the food items. Antimicrobial packaging is one such advancement in the area of active packaging. Biodegradable packaging is a basic form of packaging that will naturally degrade and disintegrate in due course of time. A developing trend in the active and smart food packaging sector is the use of natural antioxidant chemicals and inorganic nanoparticles (NPs). The potential for active food packaging applications has been highlighted by the incorporation of these materials, such as polysaccharides and proteins, in biobased and degradable matrices, because of their stronger antibacterial and antioxidant properties, UV-light obstruction, water vapor permeability, oxygen scavenging, and low environmental impact. The present review highlights the use of antimicrobial agents and nanoparticles in food packaging, which helps to prevent undesirable changes in the food, such as off flavors, colour changes, or the occurrence of any foodborne outcomes. This review attempts to cover the most recent advancements in antimicrobial packaging, whether edible or not, employing both conventional and novel polymers as support, with a focus on natural and biodegradable ingredients.

SELECTION OF CITATIONS
SEARCH DETAIL
...