Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Heart Circ Physiol ; 327(1): H1-H11, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38700493

ABSTRACT

Although the unfolded protein response (UPR) contributes to survival by removing misfolded proteins, endoplasmic reticulum (ER) stress also activates proapoptotic pathways. Changed sensitivity to normal developmental stimuli may underlie observed cardiomyocyte apoptosis in the healthy perinatal heart. We determined in vitro sensitivity to thapsigargin in sheep cardiomyocytes from four perinatal ages. In utero cardiac activation of ER stress and apoptotic pathways was determined at these same ages. Thapsigargin-induced phosphorylation of eukaryotic initiation factor 2 (EIF2A) was decreased by 72% between 135 and 143 dGA (P = 0.0096) and remained low at 1 dPN (P = 0.0080). Conversely, thapsigargin-induced caspase cleavage was highest around the time of birth: cleaved caspase 3 was highest at 1 dPN (3.8-fold vs. 135 dGA, P = 0.0380; 7.8-fold vs. 5 dPN, P = 0.0118), cleaved caspase 7 and cleaved caspase 12 both increased between 135 and 143 dGA (25-fold and 6.9-fold respectively, both P < 0.0001) and remained elevated at 1 dPN. Induced apoptosis, measured by TdT-mediated dUTP nick-end labeling (TUNEL) assay, was highest around the time of birth (P < 0.0001). There were changes in myocardial ER stress pathway components in utero. Glucose (78 kDa)-regulated protein (GRP78) protein levels were high in the fetus and declined after birth (P < 0.0001). EIF2A phosphorylation was profoundly depressed at 1 dPN (vs. 143 dGA, P = 0.0113). In conclusion, there is dynamic regulation of ER proteostasis, ER stress, and apoptosis cascade in the perinatal heart. Apoptotic signaling is more readily activated in fetal cardiomyocytes near birth, leading to widespread caspase cleavage in the newborn heart. These pathways are important for the regulation of normal maturation in the healthy perinatal heart.NEW & NOTEWORTHY Cardiomyocyte apoptosis occurs even in the healthy, normally developing perinatal myocardium. As cardiomyocyte number is a critical contributor to heart health, the sensitivity of cardiomyocytes to endoplasmic reticulum stress leading to apoptosis is an important consideration. This study suggests that the heart has less robust protective mechanisms in response to endoplasmic reticulum stress immediately before and after birth, and that more cardiomyocyte death can be induced by stress in this period.


Subject(s)
Animals, Newborn , Apoptosis , Myocytes, Cardiac , Thapsigargin , Animals , Apoptosis/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Sheep , Thapsigargin/pharmacology , Female , Eukaryotic Initiation Factor-2/metabolism , Endoplasmic Reticulum Stress/drug effects , Phosphorylation , Endoplasmic Reticulum Chaperone BiP , Pregnancy , Unfolded Protein Response , Cells, Cultured , Heat-Shock Proteins/metabolism , Signal Transduction , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects
2.
iScience ; 27(3): 109075, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38361607

ABSTRACT

Sleep fragmentation (SF) disrupts normal biological rhythms and has major impacts on cardiovascular health; however, it has never been shown to be a risk factor involved in the transition from cardiac hypertrophy to heart failure (HF). We now demonstrate devastating effects of SF on hypertrophic cardiomyopathy (HCM). We generated a transgenic mouse model harboring a patient-specific myosin binding protein C3 (MYBPC3) variant displaying HCM, and measured the progression of pathophysiology in the presence and absence of SF. SF induces mitochondrial damage, sarcomere disarray, and apoptosis in HCM mice; these changes result in a transition of hypertrophy to an HF phenotype by chiefly targeting redox metabolic pathways. Our findings for the first time show that SF is a risk factor for HF transition and have important implications in clinical settings where HCM patients with sleep disorders have worse prognosis, and strategic intervention with regularized sleep patterns might help such patients.

3.
Sci Transl Med ; 15(686): eade2909, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36888696

ABSTRACT

Controlling infection-driven inflammation is a major clinical dilemma because of limited therapeutic options and possible adverse effects on microbial clearance. Compounding this difficulty is the continued emergence of drug-resistant bacteria, where experimental strategies aiming to augment inflammatory responses for enhanced microbial killing are not applicable treatment options for infections of vulnerable organs. As with corneal infections, severe or prolonged inflammation jeopardizes corneal transparency, leading to devastating vision loss. We hypothesized that keratin 6a-derived antimicrobial peptides (KAMPs) may be a two-pronged remedy capable of tackling bacterial infection and inflammation at once. We used murine peritoneal neutrophils and macrophages, together with an in vivo model of sterile corneal inflammation, to find that nontoxic and prohealing KAMPs with natural 10- and 18-amino acid sequences suppressed lipoteichoic acid (LTA)- and lipopolysaccharide (LPS)-induced NFκB and IRF3 activation, proinflammatory cytokine production, and phagocyte recruitment independently of their bactericidal function. Mechanistically, KAMPs not only competed with bacterial ligands for cell surface Toll-like receptor (TLR) and co-receptors (MD2, CD14, and TLR2) but also reduced cell surface availability of TLR2 and TLR4 through promotion of receptor endocytosis. Topical KAMP treatment effectively alleviated experimental bacterial keratitis, as evidenced by substantial reductions of corneal opacification, inflammatory cell infiltration, and bacterial burden. These findings reveal the TLR-targeting activities of KAMPs and demonstrate their therapeutic potential as a multifunctional drug for managing infectious inflammatory disease.


Subject(s)
Keratins , Toll-Like Receptor 2 , Mice , Animals , Toll-Like Receptor 2/metabolism , Keratins/metabolism , Inflammation/drug therapy , Peptides/metabolism , Carrier Proteins , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Lipopolysaccharide Receptors/metabolism
4.
Exp Eye Res ; 161: 101-105, 2017 08.
Article in English | MEDLINE | ID: mdl-28506643

ABSTRACT

The purpose of this study was to investigate whether myofibroblast-related fibrosis (scarring) after microbial keratitis was modulated by the epithelial basement membrane (EBM) injury and regeneration. Rabbits were infected with Pseudomonas aeruginosa after epithelial scrape injury and the resultant severe keratitis was treated with topical tobramycin. Corneas were analyzed from one to four months after keratitis with slit lamp photos, immunohistochemistry for alpha-smooth muscle actin (α-SMA) and monocyte lineage marker CD11b, and transmission electron microscopy. At one month after keratitis, corneas had no detectible EBM lamina lucida or lamina densa, and the central stroma was packed with myofibroblasts that in some eyes extended to the posterior corneal surface with damage to Descemet's membrane and the endothelium. At one month, a nest of stromal cells in the midst of the SMA + myofibroblasts in the stroma that were CD11b+ may be fibrocyte precursors to myofibroblasts. At two to four months after keratitis, the EBM fully-regenerated and myofibroblasts disappeared from the anterior 60-90% of the stroma of all corneas, except for one four-month post-keratitis cornea where anterior myofibroblasts were still present in one localized pocket in the cornea. The organization of the stromal extracellular matrix also became less disorganized from two to four months after keratitis but remained abnormal compared to controls at the last time point. Myofibroblasts persisted in the posterior 10%-20% of posterior stroma even at four months after keratitis in the central cornea where Descemet's membrane and the endothelium were damaged. This study suggests that the EBM has a critical role in modulating myofibroblast development and fibrosis after keratitis-similar to the role of EBM in fibrosis after photorefractive keratectomy. Damage to EBM likely allows epithelium-derived transforming growth factor beta (TGFß) to penetrate the stroma and drive development and persistence of myofibroblasts. Eventual repair of EBM leads to myofibroblast apoptosis when the cells are deprived of requisite TGFß to maintain viability. The endothelium and Descemet's membrane may serve a similar function modulating TGFß penetration into the posterior stroma-with the source of TGFß likely being the aqueous humor.


Subject(s)
Corneal Stroma/pathology , Corneal Ulcer/pathology , Descemet Membrane/physiology , Epithelium, Corneal/physiology , Eye Infections, Bacterial/pathology , Pseudomonas Infections/pathology , Regeneration/physiology , Actins/metabolism , Animals , Biomarkers/metabolism , CD11b Antigen/metabolism , Corneal Injuries/metabolism , Corneal Injuries/physiopathology , Corneal Stroma/metabolism , Corneal Ulcer/metabolism , Disease Models, Animal , Eye Infections, Bacterial/metabolism , Female , Fibrosis/pathology , Immunohistochemistry , Myofibroblasts/pathology , Pseudomonas Infections/metabolism , Rabbits
5.
Artif Cells Nanomed Biotechnol ; 44(7): 1764-73, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26523428

ABSTRACT

The multiple properties of zinc sulphide nanoparticles (ZnS-NPs) are attracting great attention in the field of chemical and biological research. ZnS-NPs also find their application in biosensor and photocatalysis. Zinc is an important metal ion in retina and its deficiency leads to age-related macular degeneration. As of now, not much research is available on bio-interaction of ZnS as nanoform with retinal pigment epithelial (RPE) cells. RPE cells in the retina help in maintaining normal photoreceptor function and vision. To begin with, ZnS-NPs were synthesized and characterized using UV-visible spectra, X-ray diffraction, Fourier transform infrared spectrum, transmission electron microscopy and dynamic light scattering. Followed by the confirmation of nanoparticles, our study extended to investigate the impact of ZnS-NPs in primary mouse RPE (MRPE) cells at different concentrations. ZnS-NPs showed dose-dependent cytotoxicity in MRPE cells and no changes were observed in cells' tight intactness at minimal concentration. In addition, exposure to ZnS-NPs increased cellular permeability in dose- and time-dependent manner in MRPE cells. The findings from DCFH-DA analysis revealed that ZnS-NPs-treated cells had elevated level of reactive oxygen species and partial activation of cell apoptosis was identified after exposure to ZnS-NPs at higher concentration. Furthermore, pre-treatment of the primary MRPE cells with ZnS-NPs led to phosphorylation of Akt (Ser 473), which indicates the crucial role of ZnS-NPs in regulating cell survival at minimal concentration. Altogether, this study enumerates requisite dose of using ZnS-NPs to maintain healthy RPE cells and contributes to future studies in development of therapeutic drug and drug carrier for ocular-related disorders.


Subject(s)
Cytotoxins , Epithelial Cells/metabolism , Nanoparticles/chemistry , Retinal Pigment Epithelium/metabolism , Sulfides , Zinc Compounds , Animals , Cells, Cultured , Cytotoxins/chemistry , Cytotoxins/pharmacology , Epithelial Cells/cytology , Macular Degeneration/drug therapy , Macular Degeneration/metabolism , Mice , Retinal Pigment Epithelium/cytology , Sulfides/chemistry , Sulfides/pharmacology , Zinc Compounds/chemistry , Zinc Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...