Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(25): 31877-31894, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38868858

ABSTRACT

Interfacial failure in carbon fiber-reinforced epoxy (CFRE) laminates is a prominent mode of failure, attracting significant research attention. The large surface-energy mismatch between carbon fiber (CF) and epoxy results in a weaker interface. This study presents a facile yet effective method for enhancing the interfacial adhesion between CF and epoxy with self-healable interfaces. Two variants of a designer sizing agent, poly(ether imide) (PEI), were synthesized, one without a self-healing property termed BO, and the second one by incorporating disulfide metathesis in one of its monomers that renders self-healing properties at the interface-mediated by network reconfiguration, termed BA. 0.25 wt % of CF was found to be the optimum amount of BO and BA sizing agents. The surface free energy of CF drastically increased and became quite close to the surface energy of epoxy after the deposition of both sizing agents and the higher surface roughness. The improved surface wettability, presence of functional groups, and mechanical interlocking worked in tandem to strengthen the interface. The interlaminar shear strength (ILSS) and flexural strength (FS) of CFRE laminate sized with BO consequently increased by 35% and 22% and of CFRE laminate sized with BA increased by 26% and 19%, respectively. Fractography analysis revealed outstanding bonding between epoxy and PEI-CF, indicating that matrix fracture is the predominant mode of failure. The self-healable interfaces due to the preinstalled disulfide metathesis in the sizing agent resulted in 51% self-healing efficiency in ILSS for BA-sized CFRE laminate. Interestingly, the functional properties, deicing, and EMI shielding effectiveness were not compromised by modification of the interface with this designer sizing agent. This study opens new avenues for interfacial modification to improve the mechanical properties while retaining the key functional properties of the laminates.

2.
Nanoscale ; 16(14): 6984-6998, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38445355

ABSTRACT

Carbon fiber-reinforced epoxy (CFRE) laminates have attracted significant attention as a structural material specifically in the aerospace industry. In recent times, various strategies have been developed to modify the carbon fiber (CF) surface as the interface between the epoxy matrix and CFs plays a pivotal role in determining the overall performance of CFRE laminates. In the present work, graphene oxide (GO) was used to tag a polyetherimide (PEI, termed BA) containing exchangeable bonds and was employed as a sizing agent to improve the interfacial adhesion between CFs and epoxy. This unique GO-tagged-BA sizing agent termed BAGO significantly enhanced the mechanical properties of CFRE laminates by promoting stronger interactions between CFs and the epoxy matrix. The successful synthesis of BAGO was verified by Fourier-transform infrared spectroscopy. Additionally, the partial reduction of GO owing to this tagging with BA was further confirmed by X-ray diffraction and Raman spectroscopy, and the thermal stability of this unique sizing agent was evaluated using thermogravimetric analysis. The amount of GO in BAGO was optimized as 0.25 wt% of BA termed 0.25-BAGO. The 0.25-BAGO sizing agent resulted in a significant increase in surface roughness, from 15 nm to 140 nm, and surface energy, from 13.2 to 34.7 mN m-1 of CF. The laminates prepared from 0.25-BAGO exhibited a remarkable 40% increase in flexural strength (FS) and a 35% increase in interlaminar shear strength (ILSS) due to interfacial strengthening between epoxy and CFs. In addition, these laminates exhibited a self-healing efficiency of 51% in ILSS due to the presence of dynamic disulfide bonds in BAGO. Interestingly, the laminates with 0.25-BAGO exhibited enhanced Joule heating and enhanced deicing, though the EMI shielding efficiency slightly declined.

3.
Nanoscale ; 16(10): 5188-5205, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38376225

ABSTRACT

Microplastic (MP) pollution pervades global ecosystems, originating from improper plastic disposal and fragmentation due to factors like hydrolysis and biodegradation. These minute particles, less than 5 mm in size, have become omnipresent, impacting terrestrial, freshwater, and marine environments worldwide. Their ubiquity poses severe threats to marine life by causing physical harm and potentially transferring toxins through the food chain. Addressing this environmental crisis necessitates a sustainable strategy. Our proposed solution involves a highly efficient copper substitute polyoxometalate (Cu-POM) nanocluster infused triple interpenetrating polymer network (IPN) hydrogel, comprising chitosan (CS), polyvinyl alcohol (PVA), and polyaniline (PANI) (referred to as pGel@IPN) for mitigating MP contamination from water. This 3D IPN architecture, incorporating nanoclusters, also enhances the hydrogel's photodegradation capabilities. Our scalable approach offers a sustainable strategy to combat MPs in water bodies, as demostrated by the adsorption behaviors on the hydrogel matrix under varying conditions, simulating real-world scenarios. Evaluations of physicochemical properties, mechanical strength, and thermal behavior underscore the hydrogel's robustness and stability. Detecting minute MP particles remains challenging, prompting us to label MPs with Nile red for fluorescence microscopic analysis of their concentration and adsorption on the hydrogel. The catalytic properties of POM within the hydrogel facilitate UV-induced MP degradation, highlighting a sustainable solution. Our detailed kinetics and isotherm studies revealed pseudo-first-order and Langmuir models as fitting descriptors for MP adsorption, exhibiting a high maximum adsorption capacity (Qm). Notably, pGel@IPN achieved ∼95% and ∼93% removal efficiencies for polyvinyl chloride (PVC) and polypropylene (PP) MPs at pH ∼ 6.5, respectively, also demonstrating reusability for up to 5 cycles. Post-end-of-life, the spent adsorbent was efficiently upcycled into carbon nanomaterials, effectively removing the heavy metal Cr(VI), exemplifying circular economy principles. Our prepared hydrogel emerges as a potent solution for MP removal from water, promising effective mitigation of the emerging pollutants of MPs while ensuring sustainable environmental practices.

4.
Nanoscale ; 16(7): 3243-3268, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38265094

ABSTRACT

A key role in lessening humanity's continuous fight against cancer could be played by photodynamic therapy (PDT), a minimally invasive treatment employed in the medical care of a range of benign disorders and malignancies. Cancerous tissue can be effectively removed by using a light source-excited photosensitizer. Singlet oxygen and reactive oxygen species are produced via the photosensitizer as a result of this excitation. In the recent past, researchers have put in tremendous efforts towards developing photosensitizer molecules for photodynamic treatment (PDT) to treat cancer. Conjugated polymers, characterized by their efficient fluorescence, exceptional photostability, and strong light absorption, are currently under scrutiny for their potential applications in cancer detection and treatment through photodynamic and photothermal therapy. Researchers are exploring the versatility of these polymers, utilizing sophisticated chemical synthesis and adaptable polymer structures to create new variants with enhanced capabilities for generating singlet oxygen in photodynamic treatment (PDT). The incorporation of photosensitizers into conjugated polymer nanoparticles has proved to be beneficial, as it improves singlet oxygen formation through effective energy transfer. The evolution of nanotechnology has emerged as an alternative avenue for enhancing the performance of current photosensitizers and overcoming significant challenges in cancer PDT. Various materials, including biocompatible metals, polymers, carbon, silicon, and semiconductor-based nanomaterials, have undergone thorough investigation as potential photosensitizers for cancer PDT. This paper outlines the recent advances in singlet oxygen generation by investigators using an array of materials, including graphene quantum dots (GQDs), gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), titanium dioxide (TiO2), ytterbium (Yb) and thulium (Tm) co-doped upconversion nanoparticle cores (Yb/Tm-co-doped UCNP cores), bismuth oxychloride nanoplates and nanosheets (BiOCl nanoplates and nanosheets), and others. It also stresses the synthesis and application of systems such as amphiphilic block copolymer functionalized with folic acid (FA), polyethylene glycol (PEG), poly(ß-benzyl-L-aspartate) (PBLA10) (FA-PEG-PBLA10) functionalized with folic acid, tetra(4-hydroxyphenyl)porphyrin (THPP-(PNIPAM-b-PMAGA)4), pyrazoline-fused axial silicon phthalocyanine (HY-SiPc), phthalocyanines (HY-ZnPcp, HY-ZnPcnp, and HY-SiPc), silver nanoparticles coated with polyaniline (Ag@PANI), doxorubicin (DOX) and infrared (IR)-responsive poly(2-ethyl-2-oxazoline) (PEtOx) (DOX/PEtOx-IR NPs), particularly in NIR imaging-guided photodynamic therapy (fluorescent and photoacoustic). The study puts forward a comprehensive summary and a convincing justification for the usage of the above-mentioned materials in cancer PDT.


Subject(s)
Metal Nanoparticles , Nanoparticles , Neoplasms , Nicotinic Acids , Photochemotherapy , Succinimides , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/chemistry , Singlet Oxygen/chemistry , Polymers/chemistry , Gold/chemistry , Silver , Neoplasms/drug therapy , Nanoparticles/therapeutic use , Nanoparticles/chemistry , Doxorubicin/therapeutic use , Folic Acid
5.
Nanoscale ; 16(7): 3510-3524, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38265458

ABSTRACT

Herein, inspired by Acacia auriculiformis fruit, the shish-kebab-like growth of ZnO on carbon urchin (ZnO@CU) was designed using microwave radiation, thus leading to a hierarchal 3D structure that can promote multiple internal reflections through polarization centers. This hierarchal structure was then dispersed in a designer polyetherimide (PEI) matrix containing dynamic covalent bonds that can undergo metathesis, triggered by temperature, to harness self-healing properties in the composite. Such key attributes are required for their potential use in EMI shielding applications where frequent repairs are indispensable. Morphological investigation revealed that the ZnO flower was periodically nucleated like 'shish-kebab' structures on CU surfaces. CU was designed from short carbon fibers using a facile modified method. The EMI shielding performance of the resulting composites was investigated in the X-band, illustrating a shielding effectiveness of -40.6 dB for 2 wt% of ZnO@CU loading, and the composite can be preserved after the self-healing procedure. The ZnO 'kebabs' on 'CU shish' facilitated multiple scattering and numerous polarization centers to improve the EMI shielding performances at extremely low filler contents. In addition, the mechanical and thermal properties of the composite showed improved structural integrity and superior resistance to extreme temperatures, respectively. Overall, the proposed ZnO@CU/PEI composite has great potential to fulfill the increasing demands for lightweight EMI shielding materials in many fields.

6.
ACS Omega ; 8(44): 41282-41294, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37969965

ABSTRACT

Advanced hierarchical carbon fiber epoxy laminates with an engineered interface using in situ-grown ZnO nanorods on carbon fiber resulted in strong mechanical interlocking with the matrix. To further strengthen the interface, "site-specific" modification was realized by modifying the ZnO nanorods with bismaleimide (BMI), which facilitates "thermo-reversible" bonds with graphene oxide (GO) present in the matrix. The resulting laminates exhibited an improvement in flexural strength by 20% and in interlaminar shear strength (ILSS) by 28%. In order to gain a mechanistic insight, few laminates were prepared by "nonselectively" modifying the ZnO-grown carbon fiber (CF) with BMI. The "nonselectively" modified laminates showed flexural strength and ILSS improvement by 43 and 39%, respectively. The "nonselective" modification resulted in a strong improvement in mechanical properties; however, the "site-specific" modification yielded a higher self-healing efficiency (81%). Raman spectroscopy, scanning electron microscopy (SEM) micrographs, atomic force microscope (AFM) analysis, and contact angle analysis indicated a strong interaction of the modified CFs with the resin. Enhanced surface area and energy, along with a decrease in segmental molecular mobility observed from dynamic mechanical analysis, confirmed the mechanism for a better performance. Microscopic images revealed an improved interfacial behavior of the fractured samples, indicating a higher interfacial adhesion in the modified laminates. Besides mechanical properties, these laminates also showed excellent electromagnetic interference (EMI) shielding performance. The laminates with only ZnO-modified CF showed a high shielding effectiveness of -47 dB.

7.
Article in English | MEDLINE | ID: mdl-37932933

ABSTRACT

According to current projections, of the 400 mega tons of plastic produced globally, 70% is waste and of that only 16% is recycled and the rest is incinerated. This is estimated to contribute to ca. 16% of the net carbon emission by 2050. Such a massive amount of unmanaged plastic waste and the associated huge carbon footprint sets a significant challenge to tackle in the coming decades. To achieve net-zero carbon emission, closed-loop circular economy in plastics is crucial but collection, sorting and processing the postconsumer recycled (PCR) plastics poses humongous challenge in achieving this circularity, unless an effective strategy is designed. In a first of its kind, a designer biobased molecule was synthesized (here maleated castor oil, mCO) that is steric and thermally stable and forms in situ "homo-cross-linking" in the melt post grafting onto PCR-PP. This designer molecule, besides offering a transient network, helps bridge the fragmented PP chains which is usually not amenable from the traditional grafting (like maleic anhydride), thereby addressing a long-standing challenge of retaining the properties post grafting due to chain scission in the melt. The resulting maleated (m) PCR-PP now offers abundant functionality which helped us design single and dual covalent adaptable network (CANs) and evaluate their consequences on the structure-property correlation. The PCR-PP Vitrimers demonstrate a distinct rubbery plateau in the melt and reprocessability with >90% recovery in mechanical properties even after the fifth sequence of recycling. We propose here for the first time how the varying reactivity (single or dual) in the transient polymer network, through dynamic exchange, regulates the closed-loop circularity in PP Vitrimers. Our results begin to suggest that the varying reactivity should be taken into account as an additional design parameter, as it influences both the stress relaxation rates and the flow activation energy. We now understand that the topology reconfiguration is strongly dependent on this varying reactivity, which also controls the overall crystalline morphology and the structural properties in the Vitrimers. This study, in addition to opening new avenues for recycling PP, will help guide researchers working in this field from both academia and industry.

8.
Biopolymers ; 114(12): e23568, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37846654

ABSTRACT

Currently, conventional plastics are necessary for a variety of aspects of modern daily life, including applications in the fields of healthcare, technology, and construction. However, they could also contain potentially hazardous compounds like isocyanates, whose degradation has a negative impact on both the environment and human health. Therefore, researchers are exploring alternatives to plastic which is sustainable and environmentally friendly without compromising its mechanical and physical features. This review study highlights the production of highly eco-friendly bioplastic as an efficient alternative to non-biodegradable conventional plastic. Bioplastics are produced from various renewable biomass sources such as plant debris, fatty acids, and oils. Poly-addition of di-isocyanates and polyols is a technique employed over decades to produce polyurethanes (PUs) bioplastics from renewable biomass feedstock. The toxicity of isocyanates is a major concern with the above-mentioned approach. Novel green synthetic approaches for polyurethanes without using isocyanates have been attracting greater interest in recent years to overcome the toxicity of isocyanate-containing raw materials. The polyaddition of cyclic carbonates (CCs) and polyfunctional amines appears to be the most promising method to obtain non-isocyanate polyurethanes (NIPUs). This method results in the creation of polymeric materials with distinctive and adaptable features with the elimination of harmful compounds. Consequently, non-isocyanate polyurethanes represent a new class of green polymeric materials. In this review study, we have discussed the possibility of creating novel NIPUs from renewable feedstocks in the context of the growing demand for efficient and ecologically friendly plastic products.


Subject(s)
Isocyanates , Polyurethanes , Humans , Biopolymers , Amines , Biomass
9.
ACS Omega ; 8(28): 24695-24717, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37483250

ABSTRACT

Membrane technology is an efficient way to purify water, but it generates non-biodegradable biohazardous waste. This waste ends up in landfills, incinerators, or microplastics, threatening the environment. To address this, research is being conducted to develop compostable alternatives that are sustainable and ecofriendly. Bioplastics, which are expected to capture 40% of the market share by 2030, represent one such alternative. This review examines the feasibility of using synthetic biodegradable materials beyond cellulose and chitosan for water treatment, considering cost, carbon footprint, and stability in mechanical, thermal, and chemical environments. Although biodegradable membranes have the potential to close the recycling loop, challenges such as brittleness and water stability limit their use in membrane applications. The review suggests approaches to tackle these issues and highlights recent advances in the field of biodegradable membranes for water purification. The end-of-life perspective of these materials is also discussed, as their recyclability and compostability are critical factors in reducing the environmental impact of membrane technology. This review underscores the need to develop sustainable alternatives to conventional membrane materials and suggests that biodegradable membranes have great potential to address this challenge.

10.
ACS Appl Mater Interfaces ; 15(23): 28581-28593, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37272545

ABSTRACT

Fiber-reinforced polymer composites as a structural material have garnered tremendous interest over the past few decades. In particular, carbon fiber-reinforced epoxy (CFRE) laminates have seen extensive use in the aircraft and aerospace industry. The role of the interface between the matrix and fiber is critical and dictates the overall structural properties of the CFRE laminate. Herein, we attempt to use a commercially viable, green, and facile approach, electrophoretic deposition (EPD), to deposit covalently coupled multiscale graphene oxide (GO)/carbon nanotube (CNT) nanoconstructs onto carbon fiber (CF) fabric. The rationale behind using these hybrid conjugates is to exploit the positive synergistic effect of combining two-dimensional (2D) GO and one-dimensional (1D) CNT nanoparticles, which provide strengthening through different mechanisms resulting in a stronger matrix/fiber interface. The modified laminate with just 0.1 wt % GO/CNT content exhibited an improvement in flexural strength (FS) by 24% and interlaminar shear strength (ILSS) by 30% compared to the neat CFRE. Scanning electron microscope (SEM) micrographs confirmed uniform and homogeneous GO and GO/CNT deposition on CF. Raman, Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analyses validate the successful functionalization of CNT and covalent coupling of GO and CNT. Atomic force microscope (AFM) and contact angle analyses indicate improved interaction between the CF and matrix. The deposition of the GO/CNT nanoconstruct on the CF improved the performance of CFREs owing to enhanced wettability, surface free energy, and surface roughness, leading to increased mechanical interlocking between the epoxy and CF at the interface. Dynamic mechanical analysis showed decreased segmental motion of epoxy chains due to improved interfacial adhesion following modification. Interesting observations were made in SEM fractography, which showed considerably different failure mechanisms in the modified CFREs. Electromagnetic interference (EMI) shielding effectiveness of -45 dB was achieved in the case of the GO/CNT-CFRE system. Electrothermal heating and de-icing performance of the modified system were also explored in this study. This versatile approach can open up new avenues for CFRE modification leading to considerably improved performance.

11.
Nanoscale ; 15(28): 11935-11944, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37366152

ABSTRACT

Polyamide composite (PA-TFC) membranes are the state-of-the-art ubiquitous platforms to desalinate water at scale. We have developed a novel, transformative platform where the performance of such membranes is significantly and controllably improved by depositing thin films of polymethylacrylate [PMA] grafted silica nanoparticles (PGNPs) through the venerable Langmuir-Blodgett method. Our key practically important finding is that these constructs can have unprecedented selectivity values (i.e., ∼250-3000 bar-1, >99.0% salt rejection) at reduced feed water pressure (i.e., reduced cost) while maintaining acceptable water permeance A (= 2-5 L m-2 h-1 Bar-1) with as little as 5-7 PGNP layers. We also observe that the transport of solvent and solute are governed by different mechanisms, unlike gas transport, leading to independent control of A and selectivity. Since these membranes can be formulated using simple and low cost self-assembly methods, our work opens a new direction towards development of affordable, scalable water desalination methods.

12.
ACS Nano ; 17(8): 7272-7284, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37036338

ABSTRACT

Self-assembled graphene oxide lyotropic liquid crystal (GO LLC) structures are mostly formed in aqueous medium; however, most GO derivatives are water insoluble, so processing GO LLCs in water poses a practical limitation. The use of polar aprotic solvent (like dimethyl sulfoxide) for the formation of GO LLC structures would be interesting, because it would allow incorporating additives, like photoinitiators or cross-linkers, or blending with polymers that are insoluble in water, which hence would expand its scope. The well-balanced electrostatic interaction between DMSO and GO can promote and stabilize the GO nanosheets' alignment even at lower concentrations. With this in mind, herein we report mechanically robust, chlorine-tolerant, self-assembled nanostructured GO membranes for precise molecular sieving. Small-angle X-ray scattering and polarized optical microscopy confirmed the alignment of the modified GO nanosheets in polar aprotic solvent, and the LLC structure was effectively preserved even after cross-linking under UV light. We found that the modified GO membranes exhibited considerably improved salt rejection for monovalent ions (99%) and water flux (120 LMH) as compared to the shear-aligned GO membrane, which is well supported by forward osmosis simulation studies. Additionally, our simulation studies indicated that water molecules traveled a longer path while permeating through the GO membrane compared to the GO LLC membrane. Consequently, salt ions permeate slowly across the GO LLC membrane, yielding higher salt rejection than the GO membrane. This begins to suggest strong electrostatic repulsion with the salt ions, causing higher salt rejection in the GO LLC membrane. We foresee that the ordered cross-linked GO sheets contributed to excellent mechanical stability under a high-pressure, cross-flow, chlorine environment. Overall, these membranes are easily scalable, exhibit good mechanical stability, and represent a breakthrough for the potential use of polymerized GO LLC membranes in practical water remediation applications.

13.
Heliyon ; 9(3): e13648, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36873507

ABSTRACT

We report electromagnetic interference (EMI) shielding efficiency in the PANI-wrapped BaFe12O19 and SrFe12O19 with rGO composites. Barium and strontium hexaferrites were synthesized using the nitrate citrate gel combustion method. These hexaferrites were polymerized in situ with aniline. The PANI-coated ferrite-based composite materials were developed along with reduced graphene oxide (rGO) in acrylonitrile butadiene styrene (ABS) polymer, and their shielding effectiveness was assessed in X-band frequency range (8.2-12.4 GHz). The reflection (SER) and absorption (SEA) mechanism of shielding effectiveness was discussed with the different rGO concentrations. The results reveal that 5 wt% of rGO with PANI-coated barium and strontium hexaferrite polymer composites exhibit shielding efficiency of 21.5 dB and 19.5 dB, respectively, for 1 mm thickness composite. These hexaferrite polymer-based composite materials can be used as an attractive candidate for EM shielding materials in various technological applications.

14.
RSC Adv ; 13(9): 6087-6107, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36814875

ABSTRACT

Interpenetrating polymer network (IPN) architectures have gained a lot of interest in recent decades, mainly due to their wide range of applications including water treatment and environmental remediation. IPNs are composed of two or more crosslinked polymeric matrices that are physically entangled but not chemically connected. In polymer science, the interpenetrating network structure with its high polymer chain entanglement is commonly used to generate materials with many functional properties, such as mechanical robustness and adaptable structure. In order to remove a targeted pollutant from contaminated water, it is feasible to modify the network architectures to increase the selectivity by choosing the monomer appropriately. This review aims to give a critical overview of the recent design concepts of IPNs and their applications in desalination and water treatment and their future prospects. This article also discusses the inclusion of inorganic nanoparticles into traditional polymeric membrane networks and its advantages. In the first part, the current scenario for desalination, water pollution and conventional desalination technologies along with their challenges is discussed. Subsequently, the main strategies for the synthesis of semi-IPNs and full-IPNs, and their relevant properties in water remediation are presented based on the nature of the networks and mechanism, with an emphasis on the IPN membrane. This review article has thoroughly investigated and critically assessed published works that describe the latest study on developing IPN membranes, hydrogels and composite materials in water purification and desalination. The goal of this critical analysis is to elicit fresh perspectives regarding the application and advantages of IPNs in desalination and water treatment. This article will also provide a glimpse into future areas of research to address the challenges relating to advanced water treatment as well as its emerging sustainable approaches. The study has put forward a convincing justification and establishes the relevance of IPNs being one of the most intriguing and important areas for achieving a sustainable generation of advanced materials that could benefit mankind.

15.
Nanoscale ; 15(8): 3805-3822, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36723254

ABSTRACT

In the era of fifth-generation networks and the Internet of Things, new classes of lightweight, ultrathin, and multifunctional electromagnetic interference (EMI) shielding materials have become inevitable prerequisites for the protection of electronics from stray electromagnetic signals. In the present study, for the first time, we have designed a unique nanohybrid composed of a copper-based polyoxometalate (Cu-POM)-immobilized carbon nanotube construct, having a micron (∼100 µm)-level thickness, through a facile vacuum-assisted filtration technique. In this course of study, a total of four Cu-POMs, two from each category of Keggin and Anderson bearing opposite charges, i.e., positive and negative, have been rationally selected to investigate the effects of the host-guest electrostatic interaction between CNT and POMs in the EMI shielding performance. This approach of the host-guest electrostatic assembly between Cu-based polyanionic oxo clusters and counter-charged CNTs in the construct synergistically enhances the EMI shielding performance compared to the individual components dominated by 90% absorption in the X-band (8.2-12.4 GHz) frequency regime. Further, mutable EMI SE can be achieved by tuning the concentration of POMs and CNTs with different weight ratios. Such Cu-POM-immobilized CNT constructs demonstrating excellent shielding (∼45 dB) are not amenable via any other conventional routes, including flakes and dispersion.

16.
Nanoscale ; 15(3): 1373-1391, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36594198

ABSTRACT

The widespread use of miniaturized electronic gadgets today faces stiff reliability obstacles from factors like stray electromagnetic signals. The challenge is to design lightweight shielding materials that combine small volume and high-frequency operations to reliably reduce/eliminate electromagnetic interference. Herein, in the first of its kind, a sequential interpenetrating polymeric network (IPN) membrane was used to host a CNT construct through a stimuli-responsive trigger. The proposed construct besides being robust, sustainable, and scalable is a universal approach to fabricate a CNT construct where conventional strategies are not amenable. This approach of self-assembling counter-charged CNTs also maximizes the number of CNTs in the final construct, thereby greatly enhancing the shielding performance dominated by 90% absorption in a wide frequency band of 8.2-26.5 GHz. The IPN-CNT construct achieves specific shielding effectiveness in the range of ca. 1607-5715 dB cm2 g-1 by tuning the thickness of the CNT construct with an endearing green index (gs ≈ 1.8). The performance of such an ultra-thin, light-weight IPN-CNT construct remained unchanged when subjected to 10 000 bending cycles and on exposure to different chemical environments, indicating outstanding mechanical/chemical stability.

17.
ACS Appl Mater Interfaces ; 14(43): 49140-49157, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36279251

ABSTRACT

Fabricating green electromagnetic interference (EMI) shields is the need of the hour because strong secondary reflections in the vicinity of the shield adversely affect the environment and the reliability of the neighboring devices. To this end, the present work aims to maximize the absorption-based EMI shielding through a multilayered construct comprising a porous structure (pore size less than λ/5), a highly conducting entity, and a layer to match the impedance. The elements of this construct were positioned so that the incoming electromagnetic (EM) radiation interacts with the other layers of the construct before the conducting entity. This positioning of the layers in the construct offers a high green shielding index (gs) and low reflection coefficient (R ∼ 0.1) with an exceptionally high percent absorption (up to 99%). Polyurethane (PU) foams were fabricated using the salt-leaching technique and strategically positioned with carbon nanotube (CNT) papers and polycarbonate (PC)-based films to obtain symmetric and asymmetric constructs. These structures were then employed to gain mechanistic insight into the directional dependency of shielding performance, gs, and heat dissipation ability. Interestingly, maximum total shielding effectiveness (SET) of -52 dB (88% absorption @8.2 GHz) and specific shielding effectiveness/thickness (SSEt) of -373 dB/cm2g were achieved for a symmetric construct whereas, for the asymmetric construct, the SET and SSEt were -37 dB and -280 dB/cm2g, respectively, with an exceptionally high gs of 8.6, the highest reported so far. The asymmetricity in the construct led to directional dependence of the absorption component (% SEA, shielding effectiveness due to absorption) and heat dissipation, primarily governed by the electrical and thermal conductivity gradient, respectively. This study opens new avenues in this field and reports constructs with an exceptionally high green index.

18.
Nanoscale Adv ; 4(2): 467-478, 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-36132692

ABSTRACT

We explored a unique concept in this study to develop a membrane containing a hierarchical porous architecture derived by etching a specific component from a demixed UCST blend as the support layer and a free-standing GO and a polyamide (PA) layer as functional surfaces. To selectively sieve ions and improve chlorine tolerance performance, three different strategies were proposed here. In the first case, the free-standing GO membrane was used as the active layer. In the second case, the free-standing GO was positioned in tandem with the PA layer formed in situ. In the third case, GO was added during the formation of the active PA layer in situ. The support layer with a gradient in pore sizes (realized by varying the composition in the blends) was fabricated via crystallization induced phase separation in a classical UCST system (PVDF/PMMA) and etching out the amorphous component (here PMMA). A gradient in the pore sizes was obtained by rationally stitching the various membranes obtained by varying the blends' composition. Pure water flux and rejection experiments were carried out to evaluate the performance of this composite membrane. This unique strategy resulted in excellent salt rejection (more than 95% for a monovalent ion), improved fouling resistance (more than 85%), excellent dye removal performance (more than 96% for a cationic dye), and outstanding chlorine tolerance performance and antibacterial activity. Thus, this study emphasizes that the free-standing GO membrane's positioning controls the membranes' overall performance.

19.
Nanoscale ; 14(25): 9004-9020, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35700545

ABSTRACT

Carbon fiber reinforced epoxy (CFRE) laminate structures have emerged as futuristic materials having surpassed metals in strength and durability. The interfacial chemistry determines the mechanical performance of such laminates. In this study, a unique approach was adopted wherein the alternate layers of the carbon fiber (CF) mat were grown in situ with ZnO nano-rods and modified with bis-maleimide (BMI), and epoxy resin containing 0.2 or 0.5 wt% graphene oxide (GO) was infused using conventional VARTM technology to enhance the mechanical interlocking of epoxy with the fiber as well as to impart self-healing properties to the laminate. While ZnO rods offer surface roughness thereby facilitating better wetting of epoxy, the Diels-Alder thermo-reversible bonds between BMI and GO facilitate self-healing properties besides improving the interfacial adhesion between epoxy and CF. The rationale behind this work is to synergistically improve the interface-dominated mechanical properties like interlaminar shear strength (ILSS) while maintaining or even improving fiber-dominated properties like flexural strength (FS) as well as imparting considerable recovery in strength post the self-healing cycle. The laminates after this treatment (having 0.5 wt% GO) indeed exhibited 46% improvement in FS and 33% improvement in ILSS properties as well as an ILSS recovery of 70%. The surface analysis suggests that ZnO nano-rods offer surface roughness that helps in the wettability of the matrix on the fibers. In addition, the 2D and 3D representative volume analysis (RVE) model was established to identify the load transfer behaviour in the ZnO-CF-epoxy interface in the microscale reference region. The fractographic analysis confirmed that rigid ZnO nano-rods allowed better matrix adhesion resulting in improved mechanical performance.

20.
ACS Biomater Sci Eng ; 8(1): 170-184, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34964600

ABSTRACT

For a number of clinical applications, Ti6Al4V implants with bioactive coatings are used. However, the deposition of a functional polymeric coating with desired physical properties, biocompatibility, and long-term stability remains largely unexplored. Among widely investigated synthetic biomaterials, polyvinylidene fluoride (PVDF) with ß-polymorph and barium titanate (BaTiO3, BT) are considered as good examples of piezo-biopolymers and bioceramics, respectively. In this work, an adherent PVDF-based nanocomposite coating is deposited onto a Ti6Al4V substrate to explore the impact of its functional characteristics (piezoactivity) on cellular behavior and bioactivity (apatite growth and mineralized matrix formation). The precursor solution was prepared by physically grafting PVDF with polydopamine (pDOPA), forming mPVDF. Subsequently, mPVDF was reinforced with BaTiO3 nanoparticles in dimethylformamide/acetone solution, and the resulting nanocomposite (mPVDF-BT) was then spray-coated onto a roughened Ti6Al4V substrate using an airbrush at 140 °C under a pressure of 2 bar. The reproducibility of this simple yet effective processing approach to deposit chemically stable and adherent coatings was established. Remarkably, the modification with pDOPA and reinforcement with BaTiO3 nanoparticles resulted in an enhanced ß-fraction of PVDF up to 96%. This nanocomposite encouraged cellular viability of preosteoblasts (∼158% at day 5) and characteristic spreading, in vitro. Our findings indicate that the mPVDF-BT coating facilitated faster nucleation and growth of the biomineralized apatite layer with ∼70% coverage within 3 days of incubation in the simulated body fluid. In addition, the coupling among surface polar energy (5.5 mN/m), fractional polarity (∼117%), roughness (8.7 µm), and fibrous morphology also endorsed better cellular behavior. Taken together, this coating deposition strategy will pave the pathway toward designing cell-instructive surface-modified Ti6Al4V biomaterials with tailored biomineralization and bioactivity properties for musculoskeletal reconstruction and regeneration applications.


Subject(s)
Biocompatible Materials , Barium Compounds , Biocompatible Materials/pharmacology , Fluorocarbon Polymers , Indoles , Polymers , Polyvinyls , Reproducibility of Results , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL
...