Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 365: 121500, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38917536

ABSTRACT

Urban flooding poses a significant challenge to the rapidly growing Indian cities. Low-impact development strategies such as green roofs have shown the potential to reduce urban flooding. However, their performance assessment significantly varies across different studies. Therefore, the study's primary objective is to evaluate green roofs in the Indian context. For this evaluation, the green roofs are assessed based on building-level implementation scenarios for a high-density urban area in India for 25%,50%, and 75% application rates and different rainfall intensities (2,3 and 4-h duration and 2,5,10 and 25-year frequencies). Secondly, to probe the variations in the green roof performance across studies, uncertainty contributions to the runoff reduction from different parameters are quantified. The results show that green roofs can reduce up to 62% of flood volume and 24% of runoff. However, they are reasonably effective only beyond 25% application rates. Further, rainfall intensity contributes the most to the uncertainty of runoff reduction from green roofs. This uncertainty assessment implies that localized evaluation of green roofs depending on local rainfall conditions is required for city-wide policy planning. The study has a significant contribution to building confidence in the ability of green roofs to reduce urban floods in the context of developing countries like India.

2.
Article in English | MEDLINE | ID: mdl-26565261

ABSTRACT

The realization of a spontaneous macroscopic ferroelectric order in fluids of anisotropic mesogens is a topic of both fundamental and technological interest. Recently we demonstrated that a system of dipolar achiral disklike ellipsoids can exhibit long-searched ferroelectric liquid crystalline phases of dipolar origin. In the present work, extensive off-lattice Monte Carlo simulations are used to investigate the phase behavior of the system under the influences of the electrostatic boundary conditions that restrict any global polarization. We find that the system develops strongly ferroelectric slablike domains periodically arranged in an antiferroelectric fashion. Exploring the phase behavior at different dipole strengths, we find existence of the ferroelectric nematic and ferroelectric columnar order inside the domains. For higher dipole strengths, a biaxial phase is also obtained with a similar periodic array of ferroelectric slabs of antiparallel polarizations. We have studied the depolarizing effects by using both the Ewald summation and the spherical cutoff techniques. We present and compare the results of the two different approaches of considering the depolarizing effects in this anisotropic system. It is explicitly shown that the domain size increases with the system size as a result of considering a longer range of dipolar interactions. The system exhibits pronounced system size effects for stronger dipolar interactions. The results provide strong evidence to the novel understanding that the dipolar interactions are indeed sufficient to produce long-range ferroelectric order in anisotropic fluids.

3.
Article in English | MEDLINE | ID: mdl-25353817

ABSTRACT

The demonstration of a spontaneous macroscopic ferroelectric order in liquid phases in the absence of any long range positional order is considered an outstanding problem of both fundamental and technological interest. Recently, we reported that a system of polar achiral disklike ellipsoids can spontaneously exhibit a long searched ferroelectric nematic phase and a ferroelectric columnar phase with strong axial polarization. The major role is played by the dipolar interactions. The model system of interest consists of attractive-repulsive Gay-Berne oblate ellipsoids embedded with two parallel point dipoles positioned symmetrically on the equatorial plane of the ellipsoids. In the present work, we investigate in detail the profound effects of changing the separation between the two symmetrically placed dipoles and the strength of the dipoles upon the existence of different ferroelectric discotic liquid crystal phases via extensive off-lattice N-P-T Monte Carlo simulations. Ferroelectric biaxial phases are exhibited in addition to the uniaxial ferroelectric fluids where the phase biaxiality results from the dipolar interactions. The structures of all the ferroelectric configurations of interest are presented in detail. Simple phase diagrams are determined which include different polar and apolar discotic fluids generated by the system.

4.
Article in English | MEDLINE | ID: mdl-24827369

ABSTRACT

In a recent article [T. K. Bose and J. Saha, Phys. Rev. E 86, 050701 (2012)], we have presented the results of a Monte Carlo simulation study of the systems of dipolar Gay-Berne ellipsoids where two terminal antiparallel dipoles are placed symmetrically on the long axis of each ellipsoid, and the results revealed the combined contribution of dipolar separation and transverse orientations in controlling the tilt angle in the tilted hexatic smectic phase. The tilt angle changed from zero to a significant value, in the case of transverse dipoles, with a change in the dipolar separation. In the related comment, Madhusudana [preceding Comment, Phys. Rev. E 89, 046501 (2014)] has claimed that the physical origin of the molecular tilt in the significantly tilted phases found in the simulations is similar to that proposed by McMillan [Phys. Rev. A 8, 1921 (1973)]. Here, we explain that the claim is not correct and make it clear that the two compared pictures are quite different. In the preceding Comment, Madhusudana has also suggested an alternative explanation for tilt generation in the simulations by criticizing the original one proposed by us. We argue here in support of the original explanation and clarify that his explanation does not follow the simulation results.


Subject(s)
Colloids/chemistry , Liquid Crystals/chemistry , Models, Chemical , Models, Molecular
5.
Phys Rev Lett ; 110(26): 265701, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23848900

ABSTRACT

The demonstration of a spontaneous macroscopic ferroelectric order in liquid phases in the absence of any long-range positional order is considered as an outstanding problem of great fundamental and technological interest. We report here off-lattice Monte Carlo simulations of a system of polar achiral disklike ellipsoids which spontaneously exhibit a novel ferroelectric nematic phase which is a liquid in three dimensions, considering attractive-repulsive pair interaction suitable for the anisotropic particles. At lower temperature, the ferroelectric nematic phase condenses to a ferroelectric hexagonal columnar fluid with an axial macroscopic polarization. A spontaneous ferroelectric order of dipolar origin is established here for the first time in columnar liquid crystals. Our study demonstrates that simple dipolar interactions are indeed sufficient to produce a class of novel ferroelectric fluids of essential interest. The present work reveals the structure-property relationship of achieving long searched ferroelectric liquid crystal phases and transitions between them, and we hope these findings will help in future development of technologically important fluid ferroelectric materials.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(5 Pt 1): 050701, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23214730

ABSTRACT

We report Monte Carlo simulation studies of tilted smectic liquid crystal phases exhibited by systems of rodlike molecules having permanent dipole moments. For a theoretical understanding of the microscopic origin of the tilted smectic phases, different systems consisting of prolate ellipsoidal molecules of three different lengths, embedded with two symmetrically placed terminal antiparallel dipoles, are investigated. We find that the presence of a stable tilted phase depends crucially on the molecular elongation, which effectively makes the dipolar separation longer. We observe that in the case of molecules with transverse dipoles the tilt angle in the smectic phase gradually increases from zero to a large magnitude as we increase the molecular length, whereas systems with longitudinal dipoles show small tilts over different elongations. In this work we determine the combined contribution of dipolar separation and transverse orientations in generating biaxial liquid crystal phases with large tilt angles.


Subject(s)
Colloids/chemistry , Liquid Crystals/chemistry , Models, Chemical , Models, Molecular , Computer Simulation , Electromagnetic Fields , Phase Transition , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...