Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(22)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38857173

ABSTRACT

The software for chemical interaction networks (SCINE) project aims at pushing the frontier of quantum chemical calculations on molecular structures to a new level. While calculations on individual structures as well as on simple relations between them have become routine in chemistry, new developments have pushed the frontier in the field to high-throughput calculations. Chemical relations may be created by a search for specific molecular properties in a molecular design attempt, or they can be defined by a set of elementary reaction steps that form a chemical reaction network. The software modules of SCINE have been designed to facilitate such studies. The features of the modules are (i) general applicability of the applied methodologies ranging from electronic structure (no restriction to specific elements of the periodic table) to microkinetic modeling (with little restrictions on molecularity), full modularity so that SCINE modules can also be applied as stand-alone programs or be exchanged for external software packages that fulfill a similar purpose (to increase options for computational campaigns and to provide alternatives in case of tasks that are hard or impossible to accomplish with certain programs), (ii) high stability and autonomous operations so that control and steering by an operator are as easy as possible, and (iii) easy embedding into complex heterogeneous environments for molecular structures taken individually or in the context of a reaction network. A graphical user interface unites all modules and ensures interoperability. All components of the software have been made available as open source and free of charge.

2.
J Chem Phys ; 158(5): 054118, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36754821

ABSTRACT

Semi-empirical quantum chemical approaches are known to compromise accuracy for the feasibility of calculations on huge molecules. However, the need for ultrafast calculations in interactive quantum mechanical studies, high-throughput virtual screening, and data-driven machine learning has shifted the emphasis toward calculation runtimes recently. This comes with new constraints for the software implementation as many fast calculations would suffer from a large overhead of the manual setup and other procedures that are comparatively fast when studying a single molecular structure, but which become prohibitively slow for high-throughput demands. In this work, we discuss the effect of various well-established semi-empirical approximations on calculation speed and relate this to data transfer rates from the raw-data source computer to the results of the visualization front end. For the former, we consider desktop computers, local high performance computing, and remote cloud services in order to elucidate the effect on interactive calculations, for web and cloud interfaces in local applications, and in world-wide interactive virtual sessions. The models discussed in this work have been implemented into our open-source software SCINE Sparrow.

3.
PLoS Pathog ; 16(5): e1008503, 2020 05.
Article in English | MEDLINE | ID: mdl-32365138

ABSTRACT

Salmonella enterica serovar Typhimurium (S.Tm) infections of cultured cell lines have given rise to the ruffle model for epithelial cell invasion. According to this model, the Type-Three-Secretion-System-1 (TTSS-1) effectors SopB, SopE and SopE2 drive an explosive actin nucleation cascade, resulting in large lamellipodia- and filopodia-containing ruffles and cooperative S.Tm uptake. However, cell line experiments poorly recapitulate many of the cell and tissue features encountered in the host's gut mucosa. Here, we employed bacterial genetics and multiple imaging modalities to compare S.Tm invasion of cultured epithelial cell lines and the gut absorptive epithelium in vivo in mice. In contrast to the prevailing ruffle-model, we find that absorptive epithelial cell entry in the mouse gut occurs through "discreet-invasion". This distinct entry mode requires the conserved TTSS-1 effector SipA, involves modest elongation of local microvilli in the absence of expansive ruffles, and does not favor cooperative invasion. Discreet-invasion preferentially targets apicolateral hot spots at cell-cell junctions and shows strong dependence on local cell neighborhood. This proof-of-principle evidence challenges the current model for how S.Tm can enter gut absorptive epithelial cells in their intact in vivo context.


Subject(s)
Bacterial Adhesion , Intestinal Mucosa/microbiology , Salmonella Infections , Salmonella typhimurium , Type I Secretion Systems/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Dogs , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , HeLa Cells , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Madin Darby Canine Kidney Cells , Mice , Mice, Knockout , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Salmonella Infections/genetics , Salmonella Infections/metabolism , Salmonella Infections/microbiology , Salmonella Infections/pathology , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Salmonella typhimurium/pathogenicity , Type I Secretion Systems/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...