Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 40(5): 111169, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35926461

ABSTRACT

Chromosome alignment at the spindle equator promotes proper chromosome segregation and depends on pulling forces exerted at kinetochore fiber tips together with polar ejection forces. However, kinetochore fibers are also subjected to forces driving their poleward flux. Here we introduce a flux-driven centering model that relies on flux generated by forces within the overlaps of bridging and kinetochore fibers. This centering mechanism works so that the longer kinetochore fiber fluxes faster than the shorter one, moving the kinetochores toward the center. We develop speckle microscopy in human spindles and confirm the key prediction that kinetochore fiber flux is length dependent. Kinetochores are better centered when overlaps are shorter and the kinetochore fiber flux slower than the bridging fiber flux. We identify Kif18A and Kif4A as overlap and flux regulators and NuMA as a fiber coupler. Thus, length-dependent sliding forces exerted by the bridging fiber onto kinetochore fibers support chromosome alignment.


Subject(s)
Anaphase , Kinetochores , Cell Cycle Proteins , Chromosome Segregation , Chromosomes , Humans , Kinesins , Metaphase , Microtubules , Spindle Apparatus
2.
Mol Biol Cell ; 29(11): 1332-1345, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29851559

ABSTRACT

During metaphase, sister chromatids are connected to microtubules extending from the opposite spindle poles via kinetochores to protein complexes on the chromosome. Kinetochores congress to the equatorial plane of the spindle and oscillate around it, with kinesin-8 motors restricting these movements. Yet, the physical mechanism underlying kinetochore movements is unclear. We show that kinetochore movements in the fission yeast Schizosaccharomyces pombe are regulated by kinesin-8-promoted microtubule catastrophe, force-induced rescue, and microtubule dynamic instability. A candidate screen showed that among the selected motors only kinesin-8 motors Klp5/Klp6 are required for kinetochore centering. Kinesin-8 accumulates at the end of microtubules, where it promotes catastrophe. Laser ablation of the spindle resulted in kinetochore movement toward the intact spindle pole in wild-type and klp5Δ cells, suggesting that kinetochore movement is driven by pulling forces. Our theoretical model with Langevin description of microtubule dynamic instability shows that kinesin-8 motors are required for kinetochore centering, whereas sensitivity of rescue to force is necessary for the generation of oscillations. We found that irregular kinetochore movements occur for a broader range of parameters than regular oscillations. Thus, our work provides an explanation for how regulation of microtubule dynamic instability contributes to kinetochore congression and the accompanying movements around the spindle center.


Subject(s)
Kinesins/metabolism , Kinetochores/metabolism , Metaphase , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/cytology , Schizosaccharomyces/metabolism , Chromosomes, Fungal/metabolism , Hydroxyurea/pharmacology , Kinetochores/drug effects , Microtubules/drug effects , Models, Biological , Movement , Mutation/genetics , Spindle Apparatus/drug effects , Spindle Apparatus/metabolism
3.
Dev Cell ; 43(1): 11-23.e6, 2017 10 09.
Article in English | MEDLINE | ID: mdl-29017027

ABSTRACT

During cell division, mitotic spindle microtubules segregate chromosomes by exerting forces on kinetochores. What forces drive chromosome segregation in anaphase remains a central question. The current model for anaphase in human cells includes shortening of kinetochore fibers and separation of spindle poles. Both processes require kinetochores to be linked with the poles. Here we show, by combining laser ablation, photoactivation, and theoretical modeling, that kinetochores can separate without any attachment to one spindle pole. This separation requires the bridging fiber, a microtubule bundle that connects sister kinetochore fibers. Bridging fiber microtubules in intact spindles slide apart with kinetochore fibers, indicating strong crosslinks between them. We conclude that sliding of microtubules within the bridging fibers drives pole separation and pushes kinetochore fibers poleward by the friction of passive crosslinks between these fibers. Thus, sliding within the bridging fiber works together with the shortening of kinetochore fibers to segregate chromosomes.


Subject(s)
Anaphase/physiology , Chromosome Segregation/physiology , Kinetochores/metabolism , Metaphase/physiology , Microtubules/metabolism , Cells, Cultured , Humans , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...