Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37049284

ABSTRACT

The evaluation of cell elasticity is becoming increasingly significant, since it is now known that it impacts physiological mechanisms, such as stem cell differentiation and embryogenesis, as well as pathological processes, such as cancer invasiveness and endothelial senescence. However, the results of single-cell mechanical measurements vary considerably, not only due to systematic instrumental errors but also due to the dynamic and non-homogenous nature of the sample. In this work, relying on Chiaro nanoindenter (Optics11Life), we characterized in depth the nanoindentation experimental procedure, in order to highlight whether and how experimental conditions could affect measurements of living cell stiffness. We demonstrated that the procedure can be quite insensitive to technical replicates and that several biological conditions, such as cell confluency, starvation and passage, significantly impact the results. Experiments should be designed to maximally avoid inhomogeneous scenarios to avoid divergences in the measured phenotype.

2.
J Exp Clin Cancer Res ; 41(1): 53, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35135603

ABSTRACT

BACKGROUND: Chloride intracellular channel-1 (CLIC1) activity controls glioblastoma proliferation. Metformin exerts antitumor effects in glioblastoma stem cells (GSCs) inhibiting CLIC1 activity, but its low potency hampers its translation in clinical settings. METHODS: We synthesized a small library of novel biguanide-based compounds that were tested as antiproliferative agents for GSCs derived from human glioblastomas, in vitro using 2D and 3D cultures and in vivo in the zebrafish model. Compounds were compared to metformin for both potency and efficacy in the inhibition of GSC proliferation in vitro (MTT, Trypan blue exclusion assays, and EdU labeling) and in vivo (zebrafish model), migration (Boyden chamber assay), invasiveness (Matrigel invasion assay), self-renewal (spherogenesis assay), and CLIC1 activity (electrophysiology recordings), as well as for the absence of off-target toxicity (effects on normal stem cells and toxicity for zebrafish and chick embryos). RESULTS: We identified Q48 and Q54 as two novel CLIC1 blockers, characterized by higher antiproliferative potency than metformin in vitro, in both GSC 2D cultures and 3D spheroids. Q48 and Q54 also impaired GSC self-renewal, migration and invasion, and displayed low systemic in vivo toxicity. Q54 reduced in vivo proliferation of GSCs xenotransplanted in zebrafish hindbrain. Target specificity was confirmed by recombinant CLIC1 binding experiments using microscale thermophoresis approach. Finally, we characterized GSCs from GBMs spontaneously expressing low CLIC1 protein, demonstrating their ability to grow in vivo and to retain stem-like phenotype and functional features in vitro. In these GSCs, Q48 and Q54 displayed reduced potency and efficacy as antiproliferative agents as compared to high CLIC1-expressing tumors. However, in 3D cultures, metformin and Q48 (but not Q54) inhibited proliferation, which was dependent on the inhibition dihydrofolate reductase activity. CONCLUSIONS: These data highlight that, while CLIC1 is dispensable for the development of a subset of glioblastomas, it acts as a booster of proliferation in the majority of these tumors and its functional expression is required for biguanide antitumor class-effects. In particular, the biguanide-based derivatives Q48 and Q54, represent the leads to develop novel compounds endowed with better pharmacological profiles than metformin, to act as CLIC1-blockers for the treatment of CLIC1-expressing glioblastomas, in a precision medicine approach.


Subject(s)
Biguanides/therapeutic use , Chloride Channels/metabolism , Glioblastoma/genetics , Glioma/genetics , Neoplastic Stem Cells/metabolism , Biguanides/pharmacology , Cell Line, Tumor , Glioblastoma/pathology , Glioma/pathology , Humans
3.
Cells ; 8(11)2019 11 18.
Article in English | MEDLINE | ID: mdl-31752162

ABSTRACT

Cellular prion protein (PrPC) is a membrane-anchored glycoprotein representing the physiological counterpart of PrP scrapie (PrPSc), which plays a pathogenetic role in prion diseases. Relatively little information is however available about physiological role of PrPC. Although PrPC ablation in mice does not induce lethal phenotypes, impairment of neuronal and bone marrow plasticity was reported in embryos and adult animals. In neurons, PrPC stimulates neurite growth, prevents oxidative stress-dependent cell death, and favors antiapoptotic signaling. However, PrPC activity is not restricted to post-mitotic neurons, but promotes cell proliferation and migration during embryogenesis and tissue regeneration in adult. PrPC acts as scaffold to stabilize the binding between different membrane receptors, growth factors, and basement proteins, contributing to tumorigenesis. Indeed, ablation of PrPC expression reduces cancer cell proliferation and migration and restores cell sensitivity to chemotherapy. Conversely, PrPC overexpression in cancer stem cells (CSCs) from different tumors, including gliomas-the most malignant brain tumors-is predictive for poor prognosis, and correlates with relapses. The mechanisms of the PrPC role in tumorigenesis and its molecular partners in this activity are the topic of the present review, with a particular focus on PrPC contribution to glioma CSCs multipotency, invasiveness, and tumorigenicity.


Subject(s)
Brain Neoplasms/metabolism , Glioma/metabolism , Neoplastic Stem Cells/metabolism , PrPC Proteins/metabolism , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Glioma/drug therapy , Glioma/genetics , Humans , Neoplasm Invasiveness , Nerve Regeneration , PrPC Proteins/genetics
4.
Front Cell Neurosci ; 11: 312, 2017.
Article in English | MEDLINE | ID: mdl-29081734

ABSTRACT

Glioblastoma (GBM), the most common primary brain tumor in adults, is an aggressive, fast-growing and highly vascularized tumor, characterized by extensive invasiveness and local recurrence. In GBM and other malignancies, cancer stem cells (CSCs) are believed to drive invasive tumor growth and recurrence, being responsible for radio- and chemo-therapy resistance. Mesenchymal stem cells (MSCs) are multipotent progenitors that exhibit tropism for tumor microenvironment mediated by cytokines, chemokines and growth factors. Initial studies proposed that MSCs might exert inhibitory effects on tumor development, although, to date, contrasting evidence has been provided. Different studies reported either MSC anti-tumor activity or their support to tumor growth. Here, we examined the effects of umbilical cord (UC)-MSCs on in vitro GBM-derived CSC growth, by direct cell-to-cell interaction or indirect modulation, via the release of soluble factors. We demonstrate that UC-MSCs and CSCs exhibit reciprocal tropism when co-cultured as 3D spheroids and their direct cell interaction reduces the proliferation of both cell types. Contrasting effects were obtained by UC-MSC released factors: CSCs, cultured in the presence of conditioned medium (CM) collected from UC-MSCs, increased proliferation rate through transient ERK1/2 and Akt phosphorylation/activation. Analysis of the profile of the cytokines released by UC-MSCs in the CM revealed a strong production of molecules involved in inflammation, angiogenesis, cell migration and proliferation, such as IL-8, GRO, ENA-78 and IL-6. Since CXC chemokine receptor 2 (CXCR2), a receptor shared by several of these ligands, is expressed in GBM CSCs, we evaluated its involvement in CSC proliferation induced by UC-MSC-CM. Using the CXCR2 antagonist SB225002, we observed a partial but statistically significant inhibition of CSC proliferation and migration induced by the UC-MSC-released cytokines. Conversely, CXCR2 blockade did not reduce the reciprocal tropism between CSCs and UC-MSCs grown as spheroids. In conclusion, we show that direct (cell-to-cell contact) or indirect (via the release of soluble factors) interactions between GBM CSCs and UC-MSCs in co-culture produce divergent effects on cell growth, invasion and migration, with the former mainly causing an inhibitory response and the latter a stimulatory one, involving a paracrine activation of CXCR2.

SELECTION OF CITATIONS
SEARCH DETAIL
...