Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866726

ABSTRACT

Protoporphyrin IX (PpIX)-based photodynamic therapy (PDT) has shown limited efficacy in nonmuscle-invasive bladder cancer (NMIBC). To improve PDT efficacy, we developed singlet oxygen-cleavable prodrugs. These prodrugs, when combined with PpIX-PDT, induce cancer cell death through both PDT and drug release mechanisms. Inhibition of PpIX efflux was reported to be an effective strategy to improve PpIX-PDT in certain cancer cells. Our main goal was to investigate whether adding an efflux inhibitor to the combination of PpIX and prodrugs can improve the PpIX levels in bladder cancer cells and the release of active drugs, thus improving the overall efficacy of the treatment. We treated bladder cancer cell lines with lapatinib and evaluated intracellular PpIX fluorescence, finding significantly increased accumulation. Combining lapatinib with prodrugs led to significantly reduced cell viability compared to prodrugs or PpIX-PDT alone. The effect of lapatinib depended on the expression level of the efflux pump in bladder cancer cells. Interestingly, lapatinib increased paclitaxel (PTX) prodrug uptake by threefold compared to prodrug alone. Adding an efflux inhibitor (e.g., lapatinib) into bladder instillation solutions could be a straightforward and effective strategy for NMIBC treatment, particularly in tumors expressing efflux pumps, with the potential for clinical translation.

2.
Biol Methods Protoc ; 9(1): bpae029, 2024.
Article in English | MEDLINE | ID: mdl-38783988

ABSTRACT

Small interfering RNA (siRNA) is a powerful tool for sequence-specific silencing of disease-related genes. In this study, we established and validated a stem-loop reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method applicable for both chemically unmodified and modified siRNA, aiming to elucidate mechanistic intracellular pharmacokinetic and pharmacodynamic (PK/PD) properties of siRNA. We conducted a comprehensive evaluation of factors affecting intracellular siRNA quantification. Our study revealed that immobilization-based siRNA extraction introduced high variation, making it unsuitable for absolute quantification. Conversely, direct cell lysis followed by stem-loop RT-qPCR demonstrated excellent reproducibility, with a quantification range from 0.0002 to 20 femtomole (fmole) for unmodified siRNA and 0.02 to 20 fmole for modified siRNA. The design of a 6-bp overlapping RT primer facilitated the distinction of full-length antisense from its 3'-metabolites, and pre-annealing of antisense to RT primer enhanced sensitivity and reproducibility. Differences in siRNA loss during storage and sample processing were noted among microcentrifuge tubes from various manufacturers. Endogenous miR-16 served as a reference for normalizing cytoplasmic siRNA, while protein concentration post-immunoprecipitation lysis was used to normalize RNA-induced silencing complex (RISC)-loaded siRNA levels. This method successfully enabled a detailed characterization of the time profiles of cytoplasmic and RISC-loaded siRNA, advancing the in vitro-in vivo translation of siRNA therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL
...