Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurointerv Surg ; 14(9): 853-857, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34782400

ABSTRACT

BACKGROUND: Vaccine-induced thrombosis and thrombocytopenia (VITT) is a rare complication following ChAdOx1 nCoV-19 vaccination. Cerebral venous sinus thrombosis (CVST) is overrepresented in VITT and is often associated with multifocal venous thromboses, concomitant hemorrhage and poor outcomes. Hitherto, endovascular treatments have not been reviewed in VITT-related CVST. METHODS: Patient records from a tertiary neurosciences center were reviewed to identify patients who had endovascular treatment for CVST in VITT. RESULTS: Patient records from 1 January 2021 to 20 July 2021 identified three patients who underwent endovascular treatment for CVST in the context of VITT. All were female and the median age was 52 years. The location of the CVST was highly variable. Two-thirds of the patients had multifocal dural sinus thromboses (sigmoid, transverse, straight and superior sagittal) as well as internal jugular vein thromboses. Intracerebral hemorrhage occurred in all patients; subarachnoid blood was noted in two of them, and intraparenchymal hemorrhage occurred in all. There was one periprocedural parenchymal extravasation which abated on temporary cessation of anticoagulation. Outcome data revealed a 90-day modified Rankin Scale (mRS) score of 2 in all cases. CONCLUSIONS: We demonstrate that endovascular treatment for VITT-associated CVST is feasible and can be safe in cases that deteriorate despite medical therapy. Extensive clot burden, concomitant hemorrhage, rapid clinical progression and persistent rises in intracranial pressure should initiate multidisciplinary team discussion for endovascular treatment in appropriate cases.


Subject(s)
Sinus Thrombosis, Intracranial , Thrombocytopenia , ChAdOx1 nCoV-19 , Cranial Sinuses , Female , Humans , Male , Middle Aged , Sinus Thrombosis, Intracranial/diagnostic imaging , Sinus Thrombosis, Intracranial/etiology , Sinus Thrombosis, Intracranial/therapy , Thrombocytopenia/chemically induced , Vaccination
3.
Biomed Spectrosc Imaging ; 8(1-2): 11-28, 2019 Jul 09.
Article in English | MEDLINE | ID: mdl-31328097

ABSTRACT

BACKGROUND AND OBJECTIVE: In hyperacute ischaemic stroke, T2 of cerebral water increases with time. Quantifying this change may be informative of the extent of tissue damage and onset time. Our objective was to develop a user-unbiased method to measure the effect of cerebral ischaemia on T2 to study stroke onset time-dependency in human acute stroke lesions. METHODS: Six rats were subjected to permanent middle cerebral occlusion to induce focal ischaemia, and a consecutive cohort of acute stroke patients (n = 38) were recruited within 9 hours from symptom onset. T1-weighted structural, T2 relaxometry, and diffusion MRI for apparent diffusion coefficient (ADC) were acquired. Ischaemic lesions were defined as regions of lowered ADC. The median T2 difference (ΔT2) between lesion and contralateral non-ischaemic control region was determined by the newly-developed spherical reference method, and data compared to that obtained by the mirror reference method. Linear regressions and receiver operating characteristics (ROC) were compared between the two methods. RESULTS: ΔT2 increases linearly in rat brain ischaemia by 1.9 ± 0.8 ms/h during the first 6 hours, as determined by the spherical reference method. In patients, ΔT2 linearly increases by 1.6 ± 1.4 and 1.9 ± 0.9 ms/h in the lesion, as determined by the mirror reference and spherical reference method, respectively. ROC analyses produced areas under the curve of 0.83 and 0.71 for the spherical and mirror reference methods, respectively. CONCLUSIONS: Data from the spherical reference method showed that the median T2 increase in the ischaemic lesion is correlated with stroke onset time in a rat as well as in a human patient cohort, opening the possibility of using the approach as a timing tool in clinics.

4.
Phys Med Biol ; 64(9): 095016, 2019 04 29.
Article in English | MEDLINE | ID: mdl-30921782

ABSTRACT

The apparent diffusion coefficient (ADC) of cerebral water, as measured by diffusion MRI, rapidly decreases in ischaemia, highlighting a lesion in acute stroke patients. The MRI T 2 relaxation time changes in ischaemic brain such that T 2 in ADC lesions may be informative of the extent of tissue damage, potentially aiding in stratification for treatment. We have developed a novel user-unbiased method of determining the changes in T 2 in ADC lesions as a function of clinical symptom duration based on voxel-wise referencing to a contralateral brain volume. The spherical reference method calculates the most probable pre-ischaemic T 2 on a voxel-wise basis, making use of features of the contralateral hemisphere presumed to be largely unaffected. We studied whether T 2 changes in the two main cerebral tissue types, i.e. in grey matter (GM) and white matter (WM), would differ in stroke. Thirty-eight acute stroke patients were accrued within 9 h of symptom onset and scanned at 3 T for 3D T 1-weighted, multi b-value diffusion and multi-echo spin echo MRI for tissue type segmentation, quantitative ADC and absolute T 2 images, respectively. T 2 changes measured by the spherical reference method were 1.94 ± 0.61, 1.50 ± 0.52 and 1.40 ± 0.54 ms h-1 in the whole, GM, and WM lesions, respectively. Thus, T 2 time courses were comparable between GM and WM independent of brain tissue type involved. We demonstrate that T 2 changes in ADC-delineated lesions can be quantified in the clinical setting in a user unbiased manner and that T 2 change correlated with symptom onset time, opening the possibility of using the approach as a tool to assess severity of tissue damage in the clinical setting.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Gray Matter/diagnostic imaging , Stroke/diagnostic imaging , White Matter/diagnostic imaging , Female , Humans , Male , Middle Aged
5.
Stroke ; 42(4): 1056-61, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21311056

ABSTRACT

BACKGROUND AND PURPOSE: Stroke patients often have difficulties in simultaneously performing a motor and cognitive task. Functional imaging studies have shown that movement of an affected hand after stroke is associated with increased activity in multiple cortical areas, particularly in the contralesional hemisphere. We hypothesized patients for whom executing simple movements demands greater selective attention will show greater brain activity during movement. METHODS: Eight chronic stroke patients performed a behavioral interference test using a visuo-motor tracking with and without a simultaneous cognitive task. The magnitude of behavioral task decrement under cognitive motor interference (CMI) conditions was calculated for each subject. Functional MRI was used to assess brain activity in the same patients during performance of a visuo-motor tracking task alone; correlations between CMI score and movement-related brain activation were then explored. RESULTS: Movement-related activation in the dorsal precentral gyrus of the contralesional hemisphere correlated strongly and positively with CMI score (r(2) at peak voxel=0.92; P<0.05). Similar but weaker relationships were observed in the ventral precentral and middle frontal gyrus. There was no independent relationship between hand motor impairment and CMI. CONCLUSIONS: Results suggest that variations in the degree to which a cognitive task interferes with performance of a concurrent motor task explains a substantial proportion of the variations in movement-related brain activity in patients after stroke. The results emphasize the importance of considering cognitive context when interpreting brain activity patterns and provide a rationale for further evaluation of integrated cognitive and movement interventions for rehabilitation in stroke.


Subject(s)
Cognition/physiology , Hand/physiopathology , Motor Cortex/physiopathology , Movement/physiology , Paresis/physiopathology , Stroke/physiopathology , Adult , Aged , Aged, 80 and over , Female , Hand/innervation , Humans , Male , Middle Aged , Motor Cortex/anatomy & histology , Paresis/etiology , Paresis/rehabilitation , Stroke/complications , Stroke Rehabilitation
6.
Hum Brain Mapp ; 32(3): 494-508, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20533562

ABSTRACT

People vary in their ability to learn new motor skills. We hypothesize that between-subject variability in brain structure and function can explain differences in learning. We use brain functional and structural MRI methods to characterize such neural correlates of individual variations in motor learning. Healthy subjects applied isometric grip force of varying magnitudes with their right hands cued visually to generate smoothly-varying pressures following a regular pattern. We tested whether individual variations in motor learning were associated with anatomically colocalized variations in magnitude of functional MRI (fMRI) signal or in MRI differences related to white and grey matter microstructure. We found that individual motor learning was correlated with greater functional activation in the prefrontal, premotor, and parietal cortices, as well as in the basal ganglia and cerebellum. Structural MRI correlates were found in the premotor cortex [for fractional anisotropy (FA)] and in the cerebellum [for both grey matter density and FA]. The cerebellar microstructural differences were anatomically colocalized with fMRI correlates of learning. This study thus suggests that variations across the population in the function and structure of specific brain regions for motor control explain some of the individual differences in skill learning. This strengthens the notion that brain structure determines some limits to cognitive function even in a healthy population. Along with evidence from pathology suggesting a role for these regions in spontaneous motor recovery, our results also highlight potential targets for therapeutic interventions designed to maximize plasticity for recovery of similar visuomotor skills after brain injury.


Subject(s)
Brain Mapping , Individuality , Learning/physiology , Motor Cortex/physiology , Motor Skills/physiology , Adult , Diffusion Magnetic Resonance Imaging , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/methods , Male , Motor Cortex/blood supply , Neuropsychological Tests , Oxygen/blood , Photic Stimulation/methods , Principal Component Analysis , Reaction Time , Rest , Statistics as Topic , Young Adult
7.
Neuroimage ; 51(3): 943-51, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20211265

ABSTRACT

Normal ageing is associated with gradual brain atrophy. Determining spatial and temporal patterns of change can help shed light on underlying mechanisms. Neuroimaging provides various measures of brain structure that can be used to assess such age-related change but studies to date have typically considered single imaging measures. Although there is consensus on the notion that brain structure deteriorates with age, evidence on the precise time course and spatial distribution of changes is mixed. We assessed grey matter (GM) and white matter (WM) structure in a group of 66 adults aged between 23 and 81. Multimodal imaging measures included voxel-based morphometry (VBM)-style analysis of GM and WM volume and diffusion tensor imaging (DTI) metrics of WM microstructure. We found widespread reductions in GM volume from middle age onwards but earlier reductions in GM were detected in frontal cortex. Widespread age-related deterioration in WM microstructure was detected from young adulthood onwards. WM decline was detected earlier and more sensitively using DTI-based measures of microstructure than using markers of WM volume derived from conventional T1-weighted imaging.


Subject(s)
Aging/pathology , Brain/anatomy & histology , Nerve Fibers, Myelinated/ultrastructure , Neurons/cytology , Adult , Aged , Aging/physiology , Brain/physiology , Diffusion Magnetic Resonance Imaging/methods , Female , Humans , Male , Middle Aged , Nerve Fibers, Myelinated/physiology , Neurons/physiology
8.
Dev Neurorehabil ; 11(3): 174-86, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18781502

ABSTRACT

PURPOSE: This study reviews the application of diffusion tensor imaging (DTI) to the study of developmental and pathological changes in brain white matter. The ability to measure and monitor such changes in vivo would provide important opportunities for charting disease progression and monitoring response to therapeutic intervention. This study first reviews the use of DTI in studying normal human brain development. It goes on to illustrate how DTI has been used to provide insights into recovery from damage in selected brain disorders. CONCLUSIONS: It is concluded that potential clinical applications of DTI include: (i) monitoring pathological change, (ii) providing markers that predict recovery and allow for individual targeting of therapy, (iii) providing outcome measures, (iv) providing measures of potentially compensatory structural changes and (v) improving understanding of normal brain anatomy to aid in interpretation of the consequences of localized damage.


Subject(s)
Brain Injuries/diagnosis , Cerebral Cortex/embryology , Diffusion Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted , Nervous System Malformations/diagnosis , Brain Diseases/congenital , Brain Diseases/diagnosis , Cerebral Cortex/pathology , Child , Child, Preschool , Disease Progression , Female , Follow-Up Studies , Gestational Age , Humans , Infant , Infant, Newborn , Male , Monitoring, Physiologic/methods , Pregnancy , Prenatal Diagnosis/methods , Recovery of Function , Reference Values , Sensitivity and Specificity
9.
Neuroimage ; 39(4): 1950-8, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18053746

ABSTRACT

Neuroimaging experiments have identified several brain regions that appear to play roles in motor learning. Here we apply a novel multivariate analytical approach to explore the dynamic interactions of brain activation regions as spatio-temporally coherent functional networks. We acquired BOLD fMRI signal during explicit motor sequence learning task to characterize the adaptive functional changes in the early phase of motor learning. Subjects practiced a 10-digit, visually cued, fixed motor sequence during 15 consecutive 30 s practice blocks interleaved with similarly cued random sequence blocks. Tensor Independent Component Analysis (TICA) decomposed the data into statistically independent spatio-temporal processes. Two components were identified that represented task-related activations. The first component showed decreasing activity of a fronto-parieto-cerebellar network during task conditions. The other exclusively related to sequence learning blocks showed activation in a network including the posterior parietal and premotor cortices. Variation in expression of this component across individual subjects correlated with differences in behavior. Relative deactivations also were found in patterns similar to those described previously as "resting state" networks. Some of these deactivation components also showed task- and time-related modulations and were related to the behavioral improvement. The spatio-temporal coherence within these networks suggests that their elements are functionally integrated. Their anatomical plausibility and correlation with behavioral measures also suggest that this approach allows characterization of the interactions of functional networks relevant to the task. Particular value for multi-variant, model-free methods such as TICA lies in the potential for generating hypotheses regarding functional anatomical networks underlying specific behaviors.


Subject(s)
Brain/physiology , Motor Skills/physiology , Nerve Net/physiology , Serial Learning/physiology , Adult , Attention/physiology , Brain Mapping , Cues , Data Interpretation, Statistical , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Multivariate Analysis , Oxygen/blood , Photic Stimulation , Principal Component Analysis , Psychomotor Performance/physiology , Reaction Time/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...