Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36501390

ABSTRACT

Sitobion miscanthi, an important viral vector of barley yellow dwarf virus (BYDV), is also symbiotically associated with endosymbionts, but little is known about the interactions between endosymbionts, aphid and BYDV. Therefore, two aphids' geographic populations, differing in their BYDV transmission efficiency, after characterizing their endosymbionts, were treated with antibiotics to investigate how changes in the composition of their endosymbiont population affected BYDV transmission efficiency. After antibiotic treatment, Rickettsia was eliminated from two geographic populations. BYDV transmission efficiency by STY geographic population dropped significantly, by -44.2% with ampicillin and -25.01% with rifampicin, but HDZ geographic population decreased by only 14.19% with ampicillin and 23.88% with rifampicin. Transcriptomic analysis showed that the number of DEGs related to the immune system, carbohydrate metabolism and lipid metabolism did increase in the STY rifampicin treatment, while replication and repair, glycan biosynthesis and metabolism increased in the STY ampicillin treatment. Proteomic analysis showed that the abundance of symbionin symL, nascent polypeptide-associated complex subunit alpha and proteasome differed significantly between the two geographic populations. We found that the endosymbionts can mediate vector viral transmission. They should therefore be included in investigations into aphid-virus interactions and plant disease epidemiology. Our findings should also help with the development of strategies to prevent virus transmission.

2.
J Econ Entomol ; 113(4): 1635-1639, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32515475

ABSTRACT

Aphids are insect vectors that have piercing-sucking mouthparts supporting diversified patterns of virus-vector interactions. Aphids primarily retain circulative viruses in the midgut/hindgut, whereas noncirculative viruses tend to be retained in the stylet. Most viruses, and many proteins from animals, have carbohydrate or carbohydrate-binding sites. Lectins vary in their specificity, of which some are able to bind to viral glycoproteins. To assess the potential competition between lectins and viral particles in virus transmission by aphids, this study examined how feeding plant lectins to aphids affects the transmission efficiency of viruses. Sitobion avenae (F, 1794) (Homoptera: Aphididae) aphids fed with Pisum sativum lectin (PSL) transmitted Barley yellow dwarf virus with significantly lower efficiency (four-fold ratio). Pea enation mosaic virus was significantly reduced in Acyrthosiphon pisum Harris (Homoptera: Aphididae) aphids fed with the lectin Concanavalin A. In comparison, the transmission of Potato virus Y was significantly reduced when Myzus persicae Sultzer (Homoptera: Aphididae) aphids were fed with PSL. Thus, lectin could be used as a blocking agent of plant viruses, facilitating an alternative approach for crop protection.


Subject(s)
Aphids , Luteovirus , Plant Viruses , Accidental Falls , Animals , Plant Diseases , Plant Lectins
3.
J Virol Methods ; 235: 34-40, 2016 09.
Article in English | MEDLINE | ID: mdl-27185564

ABSTRACT

Aphids cause serious damages to crops not only by tacking sap but also by transmitting numerous viruses. To develop biological control, the aphid alarm pheromone, namely E-ß-farnesene (EßF), has been demonstrated to be efficient to repel aphids and as attract beneficials, making it a potential tool to control aphid pests. Considering aphids also as virus vectors, changes of their behavior could also interfere with the virus acquisition and transmission process. Here, a combination of two aphid species and two potato virus models were selected to test the influence of EßF release on aphid and virus dispersion under laboratory conditions. EßF release was found to significantly decrease the population of Myzus persicae and Macrosiphum euphorbiae around the infochemical releaser but simultaneously also increasing the dispersal of Potato Virus Y (PVY). At the opposite, no significant difference for Potato Leaf Roll Virus (PLRV) transmission efficiency was observed with similar aphid alarm pheromone releases for none of the aphid species. These results provide some support to carefully consider infochemical releasers not only for push-pull strategy and pest control but also to include viral disease in a the plant protection to aphids as they are also efficient virus vectors. Impact of aphid kinds and transmission mechanisms will be discussed according to the large variation found between persistent and non persistent potato viruses and interactions with aphids and related infochemicals.


Subject(s)
Aphids/virology , Nicotiana/virology , Pest Control, Biological/methods , Plant Diseases/virology , Plant Viruses/physiology , Sesquiterpenes , Animals , Aphids/physiology , Pheromones/metabolism , Plant Leaves/virology , Plant Viruses/isolation & purification , Potyvirus/isolation & purification , Potyvirus/physiology , Sesquiterpenes/metabolism , Solanum tuberosum/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...