Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
J Appl Physiol (1985) ; 136(5): 1195-1208, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38572539

ABSTRACT

Hypertensive postmenopausal women are more likely to develop adverse cardiac remodeling and respond less effectively to drug treatment than men. High-intensity interval exercise (HIIE) is a nonpharmacological strategy for the treatment of hypertension; however, the effectiveness in women remains uncertain. This study was designed to evaluate 1) the effects of HIIE training upon morphological and functional markers of cardiovascular health in female SHR and 2) to determine whether the hormonal shift induced by ovariectomy could influence cardiovascular responses to HIIE. Thirty-six SHR were randomly assigned to four groups: ovariectomized sedentary, ovariectomized trained, sham-operated sedentary, and sham-operated trained. The trained rats performed HIIE 5 days/wk for 8 wk. Blood pressure and echocardiographic measurements were performed before and after training in animals. Cardiac response to ß-adrenergic stimulation and the expression of calcium regulatory proteins and estrogen receptors in heart samples were assessed. Endothelium-dependent vasorelaxation in response to acetylcholine was evaluated in aortic rings as well as the expression of nitric oxide synthase isoforms (eNOS and P-eNOS) by Western blotting. In both groups of trained SHR, HIIE induced eccentric cardiac remodeling with greater inotropic and chronotropic effects, as well as an increase in SERCA and ß1AR expression. However, although the trained rats showed improved endothelial function and expression of eNOS and P-eNOS in the aorta, there was no demonstrated effect on blood pressure. In addition, the responses to HIIE training were not affected by ovariectomy. This work highlights the importance of assessing the cardiovascular efficacy and safety of different exercise modalities in women.NEW & NOTEWORTHY This study reports the effects of high-intensity interval exercise (HIIE) training on cardiac and endothelial function in female hypertensive rats. Despite a lack of effect on blood pressure (BP), HIIE training induces eccentric cardiac remodeling with greater functionals effects. Furthermore, training has beneficial effects on endothelial function. However, ovarian hormones do not seem to modulate cardiac and aortic adaptations to this training modality. All this underlines the need to consider training modalities on the cardiovascular system in women.


Subject(s)
Blood Pressure , High-Intensity Interval Training , Hypertension , Ovariectomy , Physical Conditioning, Animal , Rats, Inbred SHR , Animals , Female , High-Intensity Interval Training/methods , Rats , Blood Pressure/physiology , Hypertension/physiopathology , Hypertension/metabolism , Physical Conditioning, Animal/physiology , Physical Conditioning, Animal/methods , Nitric Oxide Synthase Type III/metabolism , Vasodilation/drug effects , Vasodilation/physiology , Ventricular Remodeling/physiology
2.
Front Sports Act Living ; 6: 1353817, 2024.
Article in English | MEDLINE | ID: mdl-38450281

ABSTRACT

Introduction: In swimming, performance gains after tapering could be influenced by the pre-taper level of fatigue. Moreover, this level of fatigue could be associated with sleep. This study aimed to assess (1) the effect of tapering on performance according to the pre-taper level of fatigue in swimmers and (2) the association between sleep and pre-taper level of fatigue. Methods: Physiological, psychological and biomechanical profiles were evaluated in 26 elite swimmers on 2 occasions to estimate the pre-taper level of fatigue: at T0 and T1, scheduled respectively 10 and 3 weeks before the main competition. Sleep quantity and quality were also evaluated at T0 and T1. Race time was officially assessed at T0, T1 and during the main competition. The level of significance was set at p ≤ .05. Results: Fourteen swimmers (17 ± 2 years) were allocated to acute fatigue group (AF) and 12 swimmers (18 ± 2 years) to functional overreaching group (F-OR). From T1 to the main competition, performance was improved in AF (+1.80 ± 1.36%), while it was impaired in F-OR (-0.49 ± 1.58%, p < 0.05 vs. AF). Before taper period, total sleep time was lower in F-OR, as compared to AF. Conversely, the fragmentation index was higher in F-OR (p = .06). From wakefulness to sleep, body core temperature decreased in AF but not in F-OR. Discussion: Performance gain after tapering was higher in AF swimmers than in overreached. Moreover, pre-taper sleep was poorer in overreached swimmers, which could contribute to their different response to the same training load. This poorer sleep could be linked to a lower regulation of internal temperature.

3.
J Appl Physiol (1985) ; 136(4): 864-876, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38328822

ABSTRACT

Hormonal changes associated with menopause increase the risk of hypertension. Postexercise hypotension (PEH) is an important tool in the prevention and management of hypertension; however, menopause may alter this response. The aim of this systematic review and meta-analysis [International Prospective Registered of Systematic Review (PROSPERO): CRD42023297557] was to evaluate the effect of exercise modalities (aerobic, AE; resistance, RE; and combined exercise, CE: AE + RE) on PEH in women, according to their menopausal status (premenopausal or postmenopausal). We searched controlled trials in PubMed, Web of Science, EBSCO, and Science Direct published between 1990 and March 2023. Inclusion criteria were normotensive, pre- and hypertensive, pre- and postmenopausal women who performed an exercise session compared with a control session and reported systolic blood pressure (SBP) and diastolic blood pressure (DBP) for at least 30 min after the sessions. Methodological quality was assessed using the PEDro scale. Standardized mean differences (Hedge's g) and their 95% confidence intervals (CIs) were calculated, and Q-test and Z-test were conducted to assess differences between moderators. Forty-one trials with 718 women (474 menopausal) were included. Overall, we found with moderate evidence that SBP and DBP decreased significantly after exercise session (SBP: g = -0.69, 95% CI -0.87 to -0.51; DBP: g = -0.31, 95% CI -0.47 to -0.14), with no difference between premenopausal and postmenopausal women. Regarding exercise modalities, RE is more effective than AE and CE in lowering blood pressure (BP) in women regardless of menopausal status. In conclusion, women's menopausal status does not influence the magnitude of PEH, and the best modality to reduce BP in women seems to be RE.NEW & NOTEWORTHY This meta-analysis has demonstrated that a single bout of exercise induces postexercise hypotension (PEH) in women and that the hormonal shift occurring with menopause does not influence the magnitude of PEH. However, we have shown with moderate evidence that the effectiveness of exercise modalities differs between pre- and postmenopausal women. Resistance and combined exercises are the best modalities to induce PEH in premenopausal women, whereas resistance and aerobic exercises are more effective in postmenopausal women.


Subject(s)
Hypertension , Post-Exercise Hypotension , Humans , Female , Postmenopause , Prospective Studies , Blood Pressure , Exercise
4.
Int J Sports Physiol Perform ; 19(1): 13-18, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37917971

ABSTRACT

PURPOSE: The accuracy of heart rate (HR) measured with a wrist-worn photoplethysmography (PPG) monitor is altered during rest-exercise and exercise-rest transitions, which questions the validity of postexercise HR-recovery (HRR) parameters estimated from this device. METHODS: Thirty participants (50% female) randomly performed two 13-minute sequences (3' rest, 5' submaximal-intensity exercise, and 5' passive recovery) on treadmill and bicycle ergometers. HR was measured concomitantly with a 10-lead electrocardiogram (ECG) and a wrist-worn PPG monitor (Polar Unite). HRR was assessed by calculating Δ60 (the difference between HR during exercise and HR 60 s after exercise cessation) and by fitting HRR data into a monoexponential model. RESULTS: By focusing on Δ60 and τ (the time constant of the monoexponential curve), levels of association (r) of the Unite versus the 10-lead ECG were high to very high (.73 < r < .93), and coefficients of variation were >20% (in absolute value), except for Δ60 in the bicycle ergometer condition (11.7%). In 97% of cases, the decrease in HR after exercise appeared later with the Unite. By adjusting the time window used for the analysis according to this time lag, coefficients of variation of Δ60 decreased below 10% in the bicycle ergometer condition. CONCLUSIONS: If a wrist-worn PPG monitor is used to assess HRR, we recommend performing the submaximal-intensity exercise on a bicycle ergometer and focusing on Δ60. Furthermore, to obtain a more accurate Δ60, the time lag between the end of the exercise and the effective decrease in HR should also be considered before the calculation.


Subject(s)
Photoplethysmography , Wrist , Humans , Female , Male , Heart Rate/physiology , Exercise/physiology , Exercise Test
5.
Front Physiol ; 14: 1256440, 2023.
Article in English | MEDLINE | ID: mdl-38074329

ABSTRACT

Fatty acid translocase (FAT/CD36) is a transmembrane glycoprotein belonging to the scavenger class B receptor family and is encoded by the cluster of differentiation 36 (CD36) gene. This receptor has a high affinity for fatty acids and is involved in lipid metabolism. An abundance of FAT/CD36 during exercise occurs in mitochondria and solitary muscles. As such, we aimed to systematically review the evidence for the relationship FAT/CD36 and adipose tissue lipolysis during exercise training. Five electronic databases were selected for literature searches until June 2022: PubMed, Web of Science, Scopus, science direct, and Google Scholar. We combined the different synonyms and used the operators ("AND", "OR", "NOT"): (CD36 gene) OR (CD36 polymorphism) OR (cluster of differentiation 36) OR (FAT/CD36) OR (fatty acid translocase) OR (platelet glycoprotein IV) OR (platelet glycoprotein IIIb) AND (adipose tissue lipolysis) OR (fatty acids) OR (metabolism lipid) OR (adipocytes) AND (physical effort) OR (endurance exercise) OR (high-intensity training). All published cross-sectional, cohort, case-control, and randomized clinical trials investigating CD36 polymorphisms and adipose tissue lipolysis during exercise in subjects (elite and sub-elite athletes, non-athletes, sedentary individuals and diabetics), and using valid methods to measure FAT/CD36 expression and other biomarkers, were considered for inclusion in this review. We initially identified 476 publications according to the inclusion and exclusion criteria, and included 21 studies investigating FAT/CD36 and adipose tissue lipolysis during exercise in our systematic review after examination of titles, abstracts, full texts, and quality assessments using the PEDro scale. There were nine studies with male-only participants, three with female-only participants, and nine studies included both female and male participants. There were 859 participants in the 21 selected studies. Studies were classified as either low quality (n = 3), medium quality (n = 13), and high quality (n = 5). In general, the data suggests an association between FAT/CD36 and adipose tissue lipolysis during exercise training. Improvements in FAT/CD36 were reported during or after exercise in 6 studies, while there were no changes reported in FAT/CD36 in 4 studies. An association between fat oxidation and FAT/CD36 expression during exercise was reported in 7 studies. No agreement was reached in 5 studies on FAT/CD36 content after dietary changes and physical interventions. One study reported that FAT/CD36 protein expression in muscle was higher in women than in men, another reported that training decreased FAT/CD36 protein in insulin-resistant participants, while another study reported no differences in FAT/CD36 in young, trained individuals with type 2 diabetes. Our analysis shows an association between FAT/CD36 expression and exercise. Furthermore, an association between whole-body peak fat oxidation and FAT/CD36 expression during exercise training was demonstrated. Systematic Review Registration: [PROSPERO], identifier [CRD42022342455].

6.
Int J Sports Physiol Perform ; 18(11): 1304-1312, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37709276

ABSTRACT

PURPOSE: Short sleep duration and poor sleep quality are common in swimmers. Sleep-hygiene strategies demonstrated beneficial effects on several sleep parameters. The present study assessed the impact of a multisession sleep-hygiene training course on sleep in elite swimmers. METHODS: Twenty-eight elite swimmers (17 [2] y) participated. The sleep-hygiene strategy consisted of 3 interventions. Sleep was measured by actigraphy for 7 days before the beginning of the intervention (baseline), after the first collective intervention (postintervention), after the second collective intervention (postintervention 2), and, finally, after the individual intervention (postintervention 3). The Epworth Sleepiness Scale (ESS) was completed concurrently. Swimmers were classified into 2 groups: nonsomnolent (baseline ESS score ≤ 10, n = 13) and somnolent (baseline ESS score ≥ 11, n = 15). RESULTS: All swimmers had a total sleep time of <8 hours per night. Sixty percent of swimmers were moderately morning type. Later bedtime, less time in bed, and total sleep time were observed in the somnolent group compared with the nonsomnolent group at baseline. An interaction between training course and group factors was observed for bedtime, with a significant advance in bedtime between baseline, postintervention 2, and postintervention 3 for the somnolent group. CONCLUSIONS: The present study confirms the importance of implementing sleep-hygiene strategies, particularly in athletes with an ESS score ≥11. A conjunction of individual and collective measures (eg, earlier bedtime, napping, and delaying morning training session) could favor the total sleep time achieved.


Subject(s)
Sleep Hygiene , Sleep , Humans , Athletes , Sleep Duration , Hygiene
7.
Front Aging ; 4: 1196389, 2023.
Article in English | MEDLINE | ID: mdl-37408773

ABSTRACT

Introduction: Lower-limb physical function declines with age and contributes to a greater difficulty in performing activities of daily living. Existing assessments of lower-limb function assess one dimension of movement in isolation or are not time-efficient, which discourages their use in community and clinical settings. We aimed to address these limitations by assessing the inter-rater reliability and convergent validity of a new multimodal functional lower-limb assessment (FLA). Methods: FLA consists of five major functional movement tasks (rising from a chair, walking gait, stair ascending/descending, obstacle avoidance, and descending to a chair) performed consecutively. A total of 48 community-dwelling older adults (32 female participants; age: 71 ± 6 years) completed the FLA as well as timed up-and-go, 30-s sit-to-stand, and 6-min walk tests. Results: Slower FLA time was correlated with a slower timed up-and-go test (ρ = 0.70), less sit-to-stand repetitions (ρ = -0.65), and a shorter distance in the 6-min walk test (ρ = -0.69; all, p < 0.001). Assessments by two raters were not different (12.28 ± 3.86 s versus 12.29 ± 3.83 s, p = 0.98; inter-rater reliability ρ = 0.993, p < 0.001) and were statistically equivalent (via equivalence testing). Multiple regression and relative weights analyses demonstrated that FLA times were most predicted by the timed up-and-go performance [adjusted R 2 = 0.75; p < 0.001; raw weight 0.42 (95% CI: 0.27, 0.53)]. Discussion: Our findings document the high inter-rater reliability and moderate-strong convergent validity of the FLA. These findings warrant further investigation into the predictive validity of the FLA for its use as an assessment of lower-limb physical function among community-dwelling older adults.

8.
Int J Sports Physiol Perform ; 18(10): 1101-1108, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37369365

ABSTRACT

PURPOSE: To assess the effects of a sleep hygiene strategy on parameters of sleep quality and quantity in youth elite rugby union players. METHOD: Eleven male players (age: 19.0 [1.4] y) undertook a sleep hygiene strategy composed of 2 theoretical sessions and 3 practical sessions over a 4-week period. Sleeping time, time in bed, total sleep time, sleep latency (SL), sleep efficiency (SE), wake after sleep onset, and wake bouts were recorded with an actigraphic device during the 4-week sleep hygiene strategy (baseline) and during 4 weeks after the last intervention (postintervention). RESULTS: At baseline, the overall group reported poor sleep quantity (total sleep time = 6:27 [0:30] min), but sleep quality was considered acceptable (SL = 0:18 [0:08] min and SE = 77.8% [5.8%]). Postintervention, the overall group showed a small improvement in SL (d = -0.23 [-0.42 to -0.04], P = .003) and SE (d = 0.30 [0.03 to 0.57], P = .0004). For individual responses, sleeping time, time in bed, and total sleep time were positively influenced in only 4, 3, and 5 players, respectively. For parameters of sleep quality, SL and SE were positively influenced in a majority of players (n = 7 and 8, respectively). The magnitude of difference between baseline and postintervention was strongly associated with baseline values in SE (r = -.86; P = .0005) and wake after sleep onset (r = -.87; P = .0007). CONCLUSION: A sleep hygiene strategy is efficient to improve sleep quality but not sleep quantity in young rugby union players. The strategy was more efficient in players with lower initial sleep quality and should be implemented prior to a high cumulative fatigue period.


Subject(s)
Sleep Hygiene , Sleep Quality , Humans , Male , Adolescent , Young Adult , Adult , Sleep Hygiene/physiology , Rugby , Sleep/physiology , Actigraphy
9.
Physiol Rep ; 11(4): e15524, 2023 02.
Article in English | MEDLINE | ID: mdl-36807709

ABSTRACT

In spontaneously hypertensive rats, exercise can lead to a post-exercise decrease in blood pressure, named post-exercise hypotension (PEH). This can be following physical training but also after a single bout of mild to moderate exercise when measured with tail-cuff or externalized catheter methods. Our aim was to assess the PEH obtained with different calculation methods and to compare the magnitude of this effect induced by a moderate-intensity continuous exercise or a high-intensity intermittent exercise. Thirteen 16-week-old male spontaneously hypertensive rats performed two types of aerobic exercise (continuous or intermittent) on a treadmill. Arterial pressure was recorded by telemetry for 24 h which was started 3 h before physical exercise. Based on the literature, PEH was first evaluated with two different baseline values, and then with three different approaches. We observed that the identification of PEH depended on the method used to measure the rest value, and that its amplitude was also influenced by the calculation approach and the type of exercise performed. Hence, the calculation method and the amplitude of the detected PEH can significantly influence their physiological and pathophysiological inferences.


Subject(s)
Hypertension , Hypotension , Physical Conditioning, Animal , Post-Exercise Hypotension , Rats , Animals , Male , Rats, Inbred SHR , Blood Pressure/physiology
10.
Int J Sports Physiol Perform ; 18(4): 440-443, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36805933

ABSTRACT

PURPOSE: The accuracy of heart rate measured with a wrist photoplethysmography monitor can be influenced by the tightening of the wristband, movement of arms, or kinetics of the signal (eg, steady-state exercise vs on- and off-transients). To test these hypotheses, photoplethysmographic and electrocardiographic (ECG) signals were compared. METHODS: Thirty participants (50% female) randomly performed two 13' sequences (3' rest, 5' submaximal-intensity exercise, and 5' passive recovery) on a motorized treadmill and a bicycle ergometer. Heart rate was measured concomitantly with a 10-lead ECG, a chest-strap monitor, and 2 wrist photoplethysmography monitors (Polar Unite) with different tightening (free vs imposed at the maximum tolerable). RESULTS: The level of association (r) and coefficient of variation (CV; ie, the error of measurement) of the Polar Unite versus the 10-lead ECG is affected by the tightness of the wristband (normal vs high; r = .83 and .96, CV = 16.1 and 8.1% for the treadmill, respectively; r = .71 and .97, CV = 20.3% and 6.2% for the bicycle, respectively) by the phase of the signal (transition vs steady state; r = .90 and .97, CV = 9.0% and 7.6% for the treadmill, respectively; r = .93 and .99, CV = 7.5% and 3.1% for the bicycle, respectively) and movement of arms (treadmill vs bicycle; r = .90 and .93, CV = 9.0% and 7.5% during the transition phase, respectively; r = .97 and .99, CV = 7.6% and 3.1% during the steady-state phase, respectively). CONCLUSION: The accuracy of heart rate measured with a wrist photoplethysmography monitor is affected by the tightness of the wristband and the phase of the signal. A high tightening is required when high accuracy is expected.


Subject(s)
Photoplethysmography , Wrist , Female , Humans , Male , Electrocardiography , Exercise/physiology , Exercise Test , Heart Rate
11.
Geroscience ; 45(1): 119-140, 2023 02.
Article in English | MEDLINE | ID: mdl-35881301

ABSTRACT

Aging is characterized by cognitive decline affecting daily functioning. To manage this socio-economic challenge, several non-pharmacological methods such as physical, cognitive, and combined training are proposed. Although there is an important interest in this subject, the literature is still heterogeneous. The superiority of simultaneous training compared to passive control and physical training alone seems clear but very few studies compared simultaneous training to cognitive training alone. The aim of this pilot study was to investigate the effect of simultaneous exercise and cognitive training on several cognitive domains in healthy older adults, in comparison with either training alone. Thirty-five healthy older adults were randomized into one of three experimental groups: exercise training, cognitive training, and simultaneous exercise and cognitive training. The protocol involved two 30-min sessions per week for 24 weeks. Cognitive performance in several domains, pre-frontal cortex oxygenation, and baroreflex sensitivity were assessed before and after the intervention. All groups improved executive performance, including flexibility or working memory. We found a group by time interaction for inhibition cost (F(2,28) = 6.44; p < 0.01) and baroreflex sensitivity during controlled breathing (F(2,25) = 4.22; p = 0.01), the magnitude of improvement of each variable being associated (r = -0.39; p = 0.03). We also found a decrease in left and right pre-frontal cortex oxygenation in all groups during the trail making test B. A simultaneous exercise and cognitive training are more efficient than either training alone to improve executive function and baroreflex sensitivity. The results of this study may have important clinical repercussions by allowing to optimize the interventions designed to maintain the physical and cognitive health of older adults.


Subject(s)
Cognition , Executive Function , Humans , Aged , Executive Function/physiology , Cognition/physiology , Pilot Projects , Cognitive Training , Baroreflex , Exercise/physiology , Exercise/psychology , Frontal Lobe
12.
Front Aging Neurosci ; 14: 710958, 2022.
Article in English | MEDLINE | ID: mdl-36408116

ABSTRACT

Cognitive-motor dual-tasking is a complex activity that predicts falls risk and cognitive impairment in older adults. Cognitive and physical training can both lead to improvements in dual-tasking; however, less is known about what mechanisms underlie these changes. To investigate this, 33 healthy older adults were randomized to one of three training arms: Executive function (EF; n = 10), Aerobic Exercise (AE; n = 10), Gross Motor Abilities (GMA; n = 13) over 12 weeks (1 h, 3×/week). Single and dual-task performance (gait speed, m/s; cognitive accuracy, %) was evaluated before and after training, using the 2-back as concurrent cognitive load. Training arms were designed to improve cognitive and motor functioning, through different mechanisms (i.e., executive functioning - EF, cardiorespiratory fitness - CRF, and energy cost of walking - ECW). Compared to baseline, we observed few changes in dual-task gait speed following training (small effect). However, dual-task cognitive accuracy improved significantly, becoming facilitated by walking (large effect). There were no differences in the magnitude of improvements across training arms. We also found that older adults with lower cognitive ability (i.e., MoCA score < 26; n = 14) improved more on the dual-task cognitive accuracy following training, compared to older adults with higher cognitive ability (i.e., MoCA ≥26; n = 18). Taken together, the results suggest that regardless of the type of intervention, training appears to strengthen cognitive efficiency during dual-tasking, particularly for older adults with lower baseline cognitive status. These gains appear to occur via different mechanisms depending on the form of intervention. Implications of this research are paramount, as we demonstrate multiple routes for improving cognitive-motor dual-tasking in older adults, which may help reduce risk of cognitive impairment.

13.
Biol Sport ; 39(3): 735-743, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35959317

ABSTRACT

To assess the effects of a taper combined with proactive recovery on the repeated high intensity effort (RHIE) of elite rugby union players, and the possible interaction of pre-taper fatigue and sleep. Eighteen players performed a 3-week intensive training block followed by a 7-day exponential taper combined with a multicomponent recovery strategy. Following the intervention, players were divided into 3 groups (Normal Training: NT, Acute Fatigue: AF or Functional Overreaching: F-OR) based on their readiness to perform prior to the taper. Total sprint time [TST], percentage decrement [%D] and the number of sprints ≥90% of the best [N90] were analyzed to assess performance during a RHIE test. Subjective sleep quality was assessed through the Pittsburg Sleep Quality Index (PSQI) and the Epworth Sleepiness Scale (ESS). No improvement in TST was reported in either NT or F-OR after the taper, whereas AF tended to improve (-1.58 ± 1.95%; p > 0.05; g = -0.20). F-OR players reported baseline PSQI and ESS indicative of sleep disturbance (6.2 ± 2.2 and 10.6 ± 5.4, respectively). AF displayed a small impairment in PSQI during intensive training (11.5 ± 80.6%; p > 0.05; g = 0.20), which was reversed following the taper (-34.6 ± 62.1%; p > 0.05; g = -0.73). Pre-taper fatigue precluded the expected performance benefits of the combined taper and recovery intervention, likely associated with a lack of strictly controlled intensive training block. Poor sleep quality before the intensive training period appeared to predispose the players to developing functional overreaching.

14.
Brain Sci ; 12(7)2022 Jul 09.
Article in English | MEDLINE | ID: mdl-35884708

ABSTRACT

Menopause accelerates increases in arterial stiffness and decreases cognitive performances. The objective of this study was to compare cognitive performances in physically active pre- and post-menopausal females and their relationship with arterial stiffness. We performed a cross-sectional comparison of blood pressure, carotid−femoral pulse wave velocity (cf-PWV) and cognitive performances between physically active late pre- and early post-menopausal females. Systolic (post-menopause­pre-menopause: +6 mmHg [95% CI −1; +13], p = 0.27; ŋ2 = 0.04) and diastolic (+6 mmHg [95% CI +2; +11], p = 0.06; ŋ2 = 0.12) blood pressures, and cf-PWV (+0.29 m/s [95% CI −1.03; 1.62], p = 0.48; ŋ2 = 0.02) did not differ between groups. Post-menopausal females performed as well as pre-menopausal females on tests evaluating executive functions, episodic memory and processing speed. Group differences were observed on the computerized working memory task. Post-menopausal females had lower accuracy (p = 0.02; ŋ2 = 0.25) but similar reaction time (p = 0.70; ŋ2 < 0.01). Moreover, this performance was inversely associated with the severity of menopausal symptoms (r = −0.38; p = 0.05). These results suggest that arterial stiffness and performance on tests assessing episodic memory and processing speed and executive functions assessing inhibition and switching abilities did not differ between physically active pre- and post-menopausal females. However, post-menopausal females had lower performance on a challenging condition of a working memory task, and this difference in working memory between groups cannot be explained by increased arterial stiffness.

15.
Med Sci Sports Exerc ; 54(7): 1066-1075, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35704437

ABSTRACT

PURPOSE: The benefits of exercise on vascular health are inconsistent in postmenopausal females. We investigated if blood pressure and markers of vascular function differ between physically active early post- and late premenopausal females. METHODS: We performed a cross-sectional comparison of 24-h blood pressure, brachial artery flow-mediated dilation, microvascular reactivity (reactive hyperemia), carotid-femoral pulse wave velocity, and cardiac baroreflex sensitivity between physically active late premenopausal (n = 16, 48 ± 2 yr) and early postmenopausal (n = 14, 53 ± 2 yr) females. RESULTS: Physical activity level was similar between premenopausal (490 ± 214 min·wk-1) and postmenopausal (550 ± 303 min·wk-1) females (P = 0.868). Brachial artery flow-mediated dilation (pre, 4.6 ± 3.9, vs post, 4.7% ± 2.2%; P = 0.724), 24-h systolic (+5 mm Hg, 95% confidence interval [CI] = -1 to +10, P = 0.972) and diastolic (+4 mm Hg, 95% CI = -1 to +9, P = 0.655) blood pressures, total reactive hyperemia (pre, 1.2 ± 0.5, vs post, 1.0 ± 0.5 mL·mm Hg-1; P = 0.479), carotid-femoral pulse wave velocity (pre, 7.9 ± 1.7, vs post, 8.1 ± 1.8 m·s-1; P = 0.477), and cardiac baroreflex sensitivity (-8 ms·mm Hg-1, 95% CI = -20.55 to 4.62, P = 0.249) did not differ between groups. By contrast, peak reactive hyperemia (-0.36 mL·min-1⋅mm Hg-1, 95% CI = -0.87 to +0.15, P = 0.009) was lower in postmenopausal females. CONCLUSIONS: These results suggest that blood pressure and markers of vascular function do not differ between physically active late pre- and early postmenopausal females.


Subject(s)
Hyperemia , Pulse Wave Analysis , Blood Pressure/physiology , Brachial Artery/physiology , Cross-Sectional Studies , Female , Humans , Postmenopause/physiology
16.
Brain Sci ; 12(4)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35447987

ABSTRACT

The rapid increase in population aging and associated age-related cognitive decline requires identifying innovative and effective methods to prevent it. To manage this socio-economic challenge, physical, cognitive, and combined stimulations are proposed. The superiority of simultaneous training compared to passive control and physical training alone seems to be an efficient method, but very few studies assess the acute effect on executive function. This study aimed to investigate the acute effect of simultaneous physical and cognitive exercise on executive functions in healthy older adults, in comparison with either training alone. Seventeen healthy older adults performed three experimental conditions in randomized order: physical exercise, cognitive exercise, and simultaneous physical and cognitive exercise. The protocol involved a 30 min exercise duration at 60% of theoretical maximal heart rate or 30 min of cognitive exercise or both. Executive functions measured by the Stroop task and pre-frontal cortex oxygenation were assessed before and after the intervention. We found a main effect of time on executive function and all experimental condition seems to improve inhibition and flexibility scores (<0.05). We also found a decrease in cerebral oxygenation (Δ[HbO2]) in both hemispheres after each intervention in all cognitive performance assessed (p < 0.05). Simultaneous physical and cognitive exercise is as effective a method as either physical or cognitive exercise alone for improving executive function. The results of this study may have important clinical repercussions by allowing to optimize the interventions designed to maintain the cognitive health of older adults since simultaneous provide a time-efficient strategy to improve cognitive performance in older adults.

17.
Int J Sports Physiol Perform ; 17(6): 871-878, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35259728

ABSTRACT

PURPOSE: To assess the effect of a rugby-specific high-intensity interval-training (HIITRugby) protocol on the repeated high-intensity-effort ability of young elite rugby union players and to verify the influence of 2 preconditioning sequences composed either of physical contacts (ie, tackles) or of additional runs on the magnitude of improvement. METHOD: Fourteen players (19 [1] y; 183.5 [8.6] cm; 95.6 [15.6] kg) underwent an HIITRugby protocol, consisting of 7 supervised training sessions over 4 weeks, each session including 3 or 4 sets of 1 to 2 minutes with 1-minute recovery. Prior to HIITRugby training, players underwent a preconditioning contact sequence or a preconditioning running sequence, to assess their influence on subsequent interval-training sessions. RESULTS: The overall group showed a moderate improvement in total sprint time, sprints ≥90% of the best, and 20-m sprint (-3.91% [2.68%], P = .0002; 74.6% [123.7%], P = .012; -3.22% [3.13%], P = .003, respectively) and a large improvement in percentage decrement (-23.1% [20.5%], P = .005) following the 4-week training block. Relative improvements were similar between groups in total sprint time, 20-m sprint, and perceived difficulty, but the preconditioning running-sequence group exhibited a larger magnitude of gains in percentage decrement (-28.6% [20.2%] vs -17.6% [20.7%]; effect size = -1.01 vs -0.73). CONCLUSION: An HIITRugby training block was effective to improve repeated high-intensity-effort ability. A preconditioning contact sequence prior to HIITRugby can reduce subsequent long-interval running activity, which may attenuate the improvement of repeated high-intensity-effort indices related to the aerobic system.


Subject(s)
Athletic Performance , Football , High-Intensity Interval Training , Running , Humans , Rugby
18.
J Gerontol B Psychol Sci Soc Sci ; 77(6): 1069-1079, 2022 06 01.
Article in English | MEDLINE | ID: mdl-34865009

ABSTRACT

OBJECTIVES: Studies suggest that cognitive training and physical activity can improve age-related deficits in dual-task performances. However, both of these interventions have never been compared in the same study. This article investigates the improvement in dual-task performance in 2 types of exercise training groups and a cognitive training group and explores if there are specific dual-task components that are more sensitive or more likely to improve following each type of training. METHODS: Seventy-eight healthy inactive participants older than the age of 60 (M = 69.98, SD = 5.56) were randomized to one of three 12-week training programs: aerobic training (AET) = 26, gross motor abilities (GMA) = 27, and cognition (COG) = 25. Before and after the training program, the participants underwent physical fitness tests, and cognitive evaluations involving a computerized cognitive dual task. The AET consisted of high- and low-intensity aerobic training, the GMA of full-body exercises focusing on agility, balance, coordination, and stretching, and the COG of tablet-based exercises focusing on executive functions. RESULTS: Repeated-measures analysis of variance on reaction time data revealed a group × time interaction (F(2,75) = 11.91, p < .01) with COG having the greatest improvement, followed by a significant improvement in the GMA group. Secondary analysis revealed the COG to also improve the intraindividual variability in reaction time (F(1,24) = 8.62, p < .01), while the GMA improved the dual-task cost (F(1,26) = 12.74, p < .01). DISCUSSION: The results show that physical and cognitive training can help enhance dual-task performance by improving different aspects of the task, suggesting that different mechanisms are in play.


Subject(s)
Task Performance and Analysis , Aged , Humans , Cognition , Exercise , Exercise Therapy/methods
19.
Physiol Behav ; 242: 113621, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34648819

ABSTRACT

AIM: The aim of the current study was to assess whether executive function and prefrontal oxygenation are dependent on fitness level and age in older adults. METHODS: Twenty-four healthy males aged between 55 and 69 years old were recruited for this study. They were stratified by age, leading to the creation of two groups: 55-60 years old and 61-69 years old. A median split based on CRF created higher- and lower-fit categories of participants. Cerebral oxygenation was assessed using functional near-infrared spectroscopy (fNIRS) during a computerized Stroop task. Accuracy (% of correct responses) and reaction times (ms) were used as behavioural indicators of cognitive performances. Changes in oxygenated (∆[HbO2]) and deoxygenated (∆[HHb]) hemoglobin were measured to capture neural changes. Repeated measures ANOVAs (CRF × Age × Stroop conditions) were performed to test the null hypothesis of an absence of interaction between CRF, Age and executive performance. RESULTS: We also found an interaction between CRF and age on reaction times (p = .001), in which higher fitness levels were related to faster reaction times in the 61-69 year olds but not in the 55-60 year olds. Regarding ΔHHb, the ANOVA revealed a main effect of CRF in the right PFC (p = .04), in which higher-fit participants had a greater Δ[HHb] than the lower-fit (d = 1.5). We also found fitness by age interaction for Δ[HHb] in the right PFC (p = .04). CONCLUSION: Our results support the positive association of CRF on cerebral oxygenation and Stroop performance in healthy older males. They indicated that high-fit individuals performed better in the 61-69 year olds group, but not in the 55-60 years old group. We also observed a greater PFC oxygenation change (as measured by Δ[HHb]) in the high-fit individuals.


Subject(s)
Cardiorespiratory Fitness , Aged , Executive Function , Humans , Male , Middle Aged , Oxyhemoglobins/metabolism , Prefrontal Cortex/metabolism , Stroop Test
20.
Int J Sports Physiol Perform ; 16(8): 1103­1110, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33789247

ABSTRACT

PURPOSE: To investigate the relationship between physical fitness and repeated high-intensity effort (RHIE) ability in elite rugby union players, depending on playing position. METHOD: Thirty-nine players underwent a fitness testing battery composed of a body composition assessment, upper-body strength (1-repetition maximum bench press and 1-repetition maximum bench row), lower-body strength (6-repetition maximum back squat), and power (countermovement jump, countermovement jump with arms, and 20-m sprint), as well as aerobic fitness (Bronco test) and RHIE tests over a 1-week period. Pearson linear correlations were used to quantify relationships between fitness tests and the RHIE performance outcomes (total sprint time [TST] and percentage decrement [%D]). Thereafter, a stepwise multiple regression model was used to verify the influence of physical fitness measures on RHIE ability. RESULTS: TST was strongly to very strongly associated to body fat (BF, r = .82, P < .01), the 20-m sprint (r = .86, P < .01), countermovement jump (r = -.72, P < .01), and Bronco test (r = .90, P < .01). These fitness outcomes were related to %D, with moderate to strong associations (.82 > ∣r∣ > .54, P < .01). By playing position, similar associations were observed in forwards, but RHIE ability was only related to the 20-m sprint in backs (r = .53, P < .05). The RHIE performance model equations were TST = 13.69 + 0.01 × BF + 0.08 × Bronco + 10.20 × 20 m and %D = -14.34 + 0.11 × BF +0.18 × Bronco - 9.92 × 20 m. These models explain 88.8% and 68.2% of the variance, respectively. CONCLUSION: Body composition, lower-body power, and aerobic fitness were highly related with RHIE ability. However, backs expressed a different profile than forwards, suggesting that further research with larger sample sizes is needed to better understand the fitness determinants of backs' RHIE ability.


Subject(s)
Exercise , Rugby , Humans , Physical Fitness
SELECTION OF CITATIONS
SEARCH DETAIL
...