Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Biol Sci ; 280(1754): 20122637, 2013 Mar 07.
Article in English | MEDLINE | ID: mdl-23303542

ABSTRACT

Parent-offspring conflict (POC) describes the evolutionary conflict between offspring and their parents over parental resource allocation. Offspring are expected to demand more resources than their parents are willing to supply because these offspring are more related to their own than to their siblings' offspring. Kin selection acts to limit these divergent interests. Our model departs from previous models by describing POC as an intragenomic conflict between genes determining life-history traits during infancy or parenthood. We explain why a direct fitness approach that measures the total fitness effect during exactly one generation is required to correctly assess POC in interbrood rivalry. We find that incorrect assumptions in previous models led to an overestimation of the scope of POC. Moreover, we show why the degree of monogamy is more important for POC than previously thought. Overall, we demonstrate that a life-history-centred intragenomic approach is necessary to correctly interpret POCs. We further discuss how our work relates to the current debate about the usefulness of inclusive fitness theory.


Subject(s)
Biological Evolution , Conflict, Psychological , Maternal Behavior , Models, Genetic , Animals , Female , Mutation , Selection, Genetic
2.
PLoS One ; 6(5): e19757, 2011 May 10.
Article in English | MEDLINE | ID: mdl-21572955

ABSTRACT

Wolbachia are intracellular bacteria transmitted almost exclusively vertically through eggs. In response to this mode of transmission, Wolbachia strategically manipulate their insect hosts' reproduction. In the most common manipulation type, cytoplasmic incompatibility, infected males can only mate with infected females, but infected females can mate with all males. The mechanism of cytoplasmic incompatibility is unknown; theoretical and empirical findings need to converge to broaden our understanding of this phenomenon. For this purpose, two prominent models have been proposed: the mistiming-model and the lock-key-model. The former states that Wolbachia manipulate sperm of infected males to induce a fatal delay of the male pronucleus during the first embryonic division, but that the bacteria can compensate the delay by slowing down mitosis in fertilized eggs. The latter states that Wolbachia deposit damaging "locks" on sperm DNA of infected males, but can also provide matching "keys" in infected eggs to undo the damage. The lock-key-model, however, needs to assume a large number of locks and keys to explain all existing incompatibility patterns. The mistiming-model requires fewer assumptions but has been contradicted by empirical results. We therefore expand the mistiming-model by one quantitative dimension to create the new, so-called goalkeeper-model. Using a method based on formal logic, we show that both lock-key- and goalkeeper-model are consistent with existing data. Compared to the lock-key-model, however, the goalkeeper-model assumes only two factors and provides an idea of the evolutionary emergence of cytoplasmic incompatibility. Available cytological evidence suggests that the hypothesized second factor of the goalkeeper-model may indeed exist. Finally, we suggest empirical tests that would allow to distinguish between the models. Generalizing our results might prove interesting for the study of the mechanism and evolution of other host-parasite interactions.


Subject(s)
Cytoplasm/microbiology , Host-Parasite Interactions/physiology , Insecta/microbiology , Models, Biological , Wolbachia/physiology , Animals , Biological Evolution , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...