Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36772774

ABSTRACT

Since the turn of the millennium, the development and commercial availability of optical frequency combs has led to a steadily increase of worldwide installed frequency combs and a growing interest in using them for industrial-related metrology applications. Especially, GPS-referenced frequency combs often serve as a "self-calibrating" length standard for laser wavelength calibration in many national metrology institutes with uncertainties better than u = 1 × 10-11. In this contribution, the application of a He-Ne laser source permanently disciplined to a GPS-referenced frequency comb for the interferometric measurements in a nanopositioning machine with a measuring volume of 200 mm × 200 mm × 25 mm (NPMM-200) is discussed. For this purpose, the frequency stability of the GPS-referenced comb is characterized by heterodyning with a diode laser referenced to an ultrastable cavity. Based on this comparison, an uncertainty of u = 9.2 × 10-12 (τ = 8 s, k = 2) for the GPS-referenced comb has been obtained. By stabilizing a tunable He-Ne source to a single comb line, the long-term frequency stability of the comb is transferred onto our gas lasers increasing their long-term stability by three orders of magnitude. Second, short-term fluctuations-related length measurement errors were reduced to a value that falls below the nominal resolving capabilities of our interferometers (ΔL/L = 2.9 × 10-11). Both measures make the influence of frequency distortions on the interferometric length measurement within the NPMM-200 negligible. Furthermore, this approach establishes a permanent link of interferometric length measurements to an atomic clock.

2.
Sensors (Basel) ; 20(9)2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32354176

ABSTRACT

Liquid-borne particles sampling and cantilever-based mass detection are widely applied in many industrial and scientific fields e.g., in the detection of physical, chemical, and biological particles, and disease diagnostics, etc. Microscopic analysis of particles-adsorbed cantilever-samples can provide a good basis for measurement comparison. However, when a particles-laden droplet on a solid surface is vaporized, a cluster-ring deposit is often yielded which makes particles counting difficult or impractical. Nevertheless, in this study, we present an approach, i.e., on-cantilever particles imprinting, which effectively defies such odds to sample and deposit countable single particles on a sensing surface. Initially, we designed and fabricated a triangular microcantilever sensor whose mass m0, total beam-length L, and clamped-end beam-width w are equivalent to that of a rectangular/normal cantilever but with a higher resonant frequency (271 kHz), enhanced sensitivity (0.13 Hz/pg), and quality factor (~3000). To imprint particles on these cantilever sensors, various calibrated stainless steel dispensing tips were utilized to pioneer this study by dipping and retracting each tip from a small particle-laden droplet (resting on a hydrophobic n-type silicon substrate), followed by tip-sensor-contact (at a target point on the sensing area) to detach the solution (from the tip) and adsorb the particles, and ultimately determine the particles mass concentration. Upon imprinting/adsorbing the particles on the sensor, resonant frequency response measurements were made to determine the mass (or number of particles). A minimum detectable mass of ~0.05 pg was demonstrated. To further validate and compare such results, cantilever samples (containing adsorbed particles) were imaged by scanning electron microscopy (SEM) to determine the number of particles through counting (from which, the lowest count of about 11 magnetic polystyrene particles was obtained). The practicality of particle counting was essentially due to monolayer particle arrangement on the sensing surface. Moreover, in this work, the main measurement process influences are also explicitly examined.

3.
Sensors (Basel) ; 19(21)2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31683973

ABSTRACT

Cantilever-based sensors have attracted considerable attention in the recent past due to their enormous and endless potential and possibilities coupled with their dynamic and unprecedented sensitivity in sensing applications. In this paper, we present a technique that involves depositing and vaporizing (at ambient conditions) a particle-laden water droplet onto a defined sensing area on in-house fabricated and commercial-based silicon microcantilever sensors. This process entailed the optimization of dispensing pressure and time to generate and realize a small water droplet volume (Vd = 49.7 ± 1.9 pL). Moreover, we monitored the water evaporation trends on the sensing surface and observed total evaporation time per droplet of 39.0 ± 1.8 s against a theoretically determined value of about 37.14 s. By using monodispersed particles in water, i.e., magnetic polystyrene particles (MPS) and polymethyl methacrylate (PMMA), and adsorbing them on a dynamic cantilever sensor, the mass and number of these particles were measured and determined comparatively using resonant frequency response measurements and SEM particle count analysis, respectively. As a result, we observed and reported monolayer particles assembled on the sensor with the lowest MPS particles count of about 19 ± 2.

4.
Sci Rep ; 8(1): 1780, 2018 01 29.
Article in English | MEDLINE | ID: mdl-29379061

ABSTRACT

In recent years, DNA origami nanorulers for superresolution (SR) fluorescence microscopy have been developed from fundamental proof-of-principle experiments to commercially available test structures. The self-assembled nanostructures allow placing a defined number of fluorescent dye molecules in defined geometries in the nanometer range. Besides the unprecedented control over matter on the nanoscale, robust DNA origami nanorulers are reproducibly obtained in high yields. The distances between their fluorescent marks can be easily analysed yielding intermark distance histograms from many identical structures. Thus, DNA origami nanorulers have become excellent reference and training structures for superresolution microscopy. In this work, we go one step further and develop a calibration process for the measured distances between the fluorescent marks on DNA origami nanorulers. The superresolution technique DNA-PAINT is used to achieve nanometrological traceability of nanoruler distances following the guide to the expression of uncertainty in measurement (GUM). We further show two examples how these nanorulers are used to evaluate the performance of TIRF microscopes that are capable of single-molecule localization microscopy (SMLM).


Subject(s)
DNA/chemistry , Nanostructures/chemistry , Benchmarking/methods , Fluorescent Dyes/chemistry , Microscopy, Fluorescence/methods , Nanotechnology/methods , Reference Standards
5.
Article in English | MEDLINE | ID: mdl-34140745

ABSTRACT

All measurements performed in science and industry are based on the International System of Units, the SI. It has been proposed to revise the SI following an approach which was implemented for the redefinition of the unit of length, the metre, namely to define the SI units by fixing the numerical values of so-called defining constants, including c, h, e, k and N A. We will discuss the reasoning behind the revision, which will likely be put into force in 2018. Precision engineering was crucial to achieve the required small measurement uncertainties and agreement of measurement results for the defining constants.

6.
Opt Lett ; 39(20): 5834-7, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25361097

ABSTRACT

We present a heterodyne absolute distance interferometer with a macroscopic range, based on a promising optical source. The basis of the heterodyne measurement principle, a frequency comb pair with slightly different repetition rates and offset frequencies, is realized coherently by synchronized cavity-enhanced electro-optic frequency comb generators. The unknown distance is determined absolutely from the interferometric phases of distinct comb modes, by a parallel digital lock-in scheme. Comparison experiments with a reference HeNe incremental interferometer show an agreement well within 15 µm, for a range up to 10 m.

SELECTION OF CITATIONS
SEARCH DETAIL
...