Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(14)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37514899

ABSTRACT

The atmospheric water vapor is commonly monitored from ground Global Navigation Satellite System (GNSS) measurements, by retrieving the tropospheric delay under the Zenith Wet Delay (ZWD) component, linked to the water vapor content in the atmosphere. In recent years, the GNSS ZWD retrieval has been performed on shipborne antennas to gather more atmospheric data above the oceans for climatology and meteorology study purposes. However, when analyzing GNSS data acquired by a moving antenna, it is more complex to decorrelate the height of the antenna and the ZWD during the Precise Point Positioning (PPP) processing. Therefore, the observation modeling and processing parametrization must be tuned. This study addresses the impact of modeling on the estimation of height and ZWD from the simulation of shipborne GNSS measurements. The GNSS simulation is based on an authors-designed simulator presented in this article. We tested different processing models (elevation cut-off angle, elevation weighting function, and random walk of ZWD) and simulation configurations (the constellations used, the sampling of measurements, the location of the antenna, etc.). According to our results, we recommend processing shipborne GNSS measurements with 3° of cut-off angle, elevation weighting function square root of sine, and an average of 5 mm·h-1/2 of random walk on ZWD, the latter being specifically adapted to mid-latitudes but which could be extended to other areas. This processing modeling will be applied in further studies to monitor the distribution of water vapor above the oceans from systematic analysis of shipborne GNSS measurements.

2.
Appl Opt ; 46(33): 8170-80, 2007 Nov 20.
Article in English | MEDLINE | ID: mdl-18026556

ABSTRACT

The statistical properties of atmospheric water vapor mixing ratio (WVMR) determined as the ratio of Raman lidar signals backscattered from water vapor and nitrogen molecules are studied. It is shown that WVMR estimates can be biased by a small percentage at low signal photon-counting rates due to fluctuations in the nitrogen signal in the denominator of the ratio, the magnitude of the bias being linked to the signal-to-noise ratio of the nitrogen signal. This is particularly important when unbiased estimates are required as in the case of climate studies and global positioning system (GPS) signal calibration. Different bias corrections and a modified ratio formulation are proposed in order to correct or eliminate this bias. The method is successfully applied in processing signals obtained with an experimental Raman lidar system devoted to calibrate GPS signals for slant path delays. It is shown to reduce biases into negligible values in both WVMR and wet path delay estimates in the range interval of 0-7 km.

SELECTION OF CITATIONS
SEARCH DETAIL
...