Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 13(5)2022 May 06.
Article in English | MEDLINE | ID: mdl-35630206

ABSTRACT

The cancer xenograft model in which human cancer cells are implanted in a mouse is one of the most used preclinical models to test the efficacy of novel cancer drugs. However, the model is imperfect; animal models are ethically burdened, and the imperfect efficacy predictions contribute to high clinical attrition of novel drugs. If microfluidic cancer-on-chip models could recapitulate key elements of the xenograft model, then these models could substitute the xenograft model and subsequently surpass the xenograft model by reducing variation, increasing sensitivity and scale, and adding human factors. Here, we exposed HCT116 colorectal cancer spheroids to dynamic, in vivo-like, concentrations of oxaliplatin, including a 5 day drug-free period, on-chip. Growth inhibition on-chip was comparable to existing xenograft studies. Furthermore, immunohistochemistry showed a similar response in proliferation and apoptosis markers. While small volume changes in xenografts are hard to detect, in the chip-system, we could observe a temporary growth delay. Lastly, histopathology and a pharmacodynamic model showed that the cancer spheroid-on-chip was representative of the proliferating outer part of a HCT116 xenograft, thereby capturing the major driver of the drug response of the xenograft. Hence, the cancer-on-chip model recapitulated the response of HCT116 xenografts to oxaliplatin and provided additional drug efficacy information.

2.
Microsyst Nanoeng ; 8: 54, 2022.
Article in English | MEDLINE | ID: mdl-35615464

ABSTRACT

Integrated valves enable automated control in microfluidic systems, as they can be applied for mixing, pumping and compartmentalization purposes. Such automation would be highly valuable for applications in organ-on-chip (OoC) systems. However, OoC systems typically have channel dimensions in the range of hundreds of micrometers, which is an order of magnitude larger than those of typical microfluidic valves. The most-used fabrication process for integrated, normally open polydimethylsiloxane (PDMS) valves requires a reflow photoresist that limits the achievable channel height. In addition, the low stroke volumes of these valves make it challenging to achieve flow rates of microliters per minute, which are typically required in OoC systems. Herein, we present a mechanical 'macrovalve' fabricated by multilayer soft lithography using micromilled direct molds. We demonstrate that these valves can close off rounded channels of up to 700 µm high and 1000 µm wide. Furthermore, we used these macrovalves to create a peristaltic pump with a pumping rate of up to 48 µL/min and a mixing and metering device that can achieve the complete mixing of a volume of 6.4 µL within only 17 s. An initial cell culture experiment demonstrated that a device with integrated macrovalves is biocompatible and allows the cell culture of endothelial cells over multiple days under continuous perfusion and automated medium refreshment.

3.
Lab Chip ; 21(10): 2040-2049, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33861228

ABSTRACT

Transepithelial/transendothelial electrical resistance (TEER) measurements can be applied in organ-on-chips (OoCs) to estimate the barrier properties of a tissue or cell layer in a continuous, non-invasive, and label-free manner. Assessing the barrier integrity in in vitro models is valuable for studying and developing barrier targeting drugs. Several systems for measuring the TEER have been shown, but each of them having their own drawbacks. This article presents a cleanroom-free fabrication method for the integration of platinum electrodes in a polydimethylsiloxane OoC, allowing the real-time assessment of the barrier function by employing impedance spectroscopy. The proposed method and electrode arrangement allow visual inspection of the cells cultured in the device at the site of the electrodes, and multiplexing of both the electrodes in one OoC and the number of OoCs in one device. The effectiveness of our system is demonstrated by lining the OoC with intestinal epithelial cells, creating a gut-on-chip, where we monitored the formation, as well as the disruption and recovery of the cell barrier during a 21 day culture period. The application is further expanded by creating a blood-brain-barrier, to show that the proposed fabrication method can be applied to monitor the barrier formation in the OoC for different types of biological barriers.


Subject(s)
Dielectric Spectroscopy , Lab-On-A-Chip Devices , Electric Impedance , Electrodes , Epithelial Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...