Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biomacromolecules ; 21(12): 4709-4723, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33119299

ABSTRACT

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-3HV)) copolymer's properties depend on (i) the molar fraction of comonomers, (ii) the overall molar mass, and (ii) the chemical compositional distribution. This work aims at providing a better understanding of the effect of the P(3HB-3HV) molecular structure, produced from mixed cultures and waste feedstock, on copolymer crystallization and tensile properties. Conventional biopolymer characterization methods (differential scanning calorimetry, X-ray diffraction, and polarized optical microscopy) were coupled to both classical one-dimensional (1H and 13C) and advanced two-dimensional (diffusion-ordered spectroscopy (DOSY) and 1H/13C heteronuclear single quantum coherence (HSQC)) nuclear magnetic resonance (NMR) spectroscopy techniques. The obtained results evidenced that (i) a high-quality copolymer could be achieved, even from a waste feedstock; (ii) increasing the 3HV content displayed a positive impact on P(3HB-3HV) mechanical properties only if good interactions between 3HB and 3HV moieties were established; and (iii) the purification process eliminated short-length 3HV-rich chains and promoted homogeneous co-crystallization. Such optimized microstructures enabled the maximal stress and strain at break to be increased by +41.2 and +100%, respectively.


Subject(s)
Hydroxybutyrates , Polyesters , Crystallization , Molecular Structure
2.
Nanomaterials (Basel) ; 9(3)2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30823633

ABSTRACT

Among bio-based reinforcement additives for paper existing on the market, microfibrillated cellulose (MFC) turned out to be a promising material, showing outstanding potential in composites science. Its relevance in papermaking as a new family of paper components was suggested more recently. There remains a number of constraints limiting the promotion of their use in papermaking, mostly related to their high cost and effect on dewatering resistance. Also, contrasting results reported in the literature suggest that the effect of fibrillation rate and quantity of such cellulosic additives in a furnish on the technological paper properties needs further research. The purpose of this study is to produce and characterize different MFC-like fine fibrous materials of varying particle size and degree of fibrillation from the same batch of pulp through mechanical treatment or fractionation. The effect of the thus obtained fine fibrous materials on paper properties is evaluated with respect to their concentration within a fiber furnish. We compared: (i) a mixture of primary and secondary fines isolated from the pulp by means of a purpose-built laboratory pressure screen; (ii) MFC-like fine fibrous materials of increasingly fibrillar character obtained by refining and subsequent steps of high-pressure homogenization. The morphology of the different materials was first characterized using flow cell based and microscopic techniques. The thus obtained materials were then applied in handsheet forming in blends of different proportions to evaluate their influence on paper properties. The results of these experiments indicate that all these products lead to a substantial decrease in air permeability and to improved mechanical properties already at low concentration, independent of the type and morphological character of the added fine cellulosic material. At higher addition rates, only highly fibrillated materials allowed a further considerable increase in tensile and z-strength. These observations should help to allow a more targeted application of this new generation of materials in papermaking, depending on the desired application.

3.
PLoS One ; 11(3): e0150777, 2016.
Article in English | MEDLINE | ID: mdl-27007687

ABSTRACT

Challenging evaluation of tropical forest biodiversity requires the reporting of taxonomic diversity but also the systematic characterization of wood properties in order to discover new promising species for timber industry. Among wood properties, the dimensional stability is regarded as a major technological characteristic to validate whether a wood species is adapted to commercial uses. Cell structure and organization are known to influence the drying shrinkage making wood density and microfibrils angle markers of choice to predict wood dimensional stability. On the contrary the role of wood extractive content remains unclear. This work focuses on the fast-growing tropical species Bagassa guianensis and we report herein a correlation between heartwood drying shrinkage and extractive content. Chemical extractions and shrinkage experiments were performed on separate wood twin samples to better evaluate correctly how secondary metabolites influence the wood shrinkage behaviour. Extractive content were qualitatively and quantitatively analysed using HPLC and NMR spectroscopy. We found that B guianensis heartwood has a homogeneous low shrinkage along its radius that could not be explained only by its basic density. In fact the low drying shrinkage is correlated to the high extractive content and a corrected model to improve the prediction of wood dimensional stability is presented. Additionally NMR experiments conducted on sapwood and heartwood extracts demonstrate that secondary metabolites biosynthesis occurs in sapwood thus revealing B. guianensis as a Juglans-Type heartwood formation. This work demonstrates that B. guianensis, a fast-growing species associated with high durability and high dimensional stability, is a good candidate for lumber production and commercial purposes.


Subject(s)
Moraceae/metabolism , Wood , Chromatography, High Pressure Liquid , Magnetic Resonance Spectroscopy , Moraceae/growth & development , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL