Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 537-540, 2022 07.
Article in English | MEDLINE | ID: mdl-36083921

ABSTRACT

Traumatic brain injury (TBI) can drastically affect an individual's cognition, physical, emotional wellbeing, and behavior. Even patients with mild TBI (mTBI) may suffer from a variety of long-lasting symptoms, which motivates researchers to find better biomarkers. Machine learning algorithms have shown promising results in detecting mTBI from resting-state functional network connectivity (rsFNC) data. However, data collected at multiple sites introduces additional noise called site-effects, resulting in erroneous conclusions. Site errors are controlled through a process called harmonization, but its use in classifying neuroimaging data has been addressed lightly. With the ongoing need to improve mTBI detection, this study shows that harmonization should be integrated into the machine learning process when working with multi-site neuroimaging datasets.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Brain Concussion/diagnostic imaging , Brain Injuries, Traumatic/diagnostic imaging , Humans , Machine Learning , Magnetic Resonance Imaging/methods , Neuroimaging
2.
Front Neurol ; 13: 826734, 2022.
Article in English | MEDLINE | ID: mdl-35370895

ABSTRACT

Recent studies showed that working with neuroimage data collected from different research facilities or locations may incur additional source dependency, affecting the overall statistical power. This problem can be mitigated with data harmonization approaches. Recently, the ComBat method has become commonly adopted for various neuroimage modalities. While open neuroimaging datasets are becoming more common, a substantial amount of data is still unable to be shared for various reasons. In addition, current approaches require moving all the data to a central location, which requires additional resources and creates redundant copies of the same datasets. To address these issues, we propose a decentralized harmonization approach that does not create redundant copies of the original datasets and performs remote operations on the datasets separately without sharing any individual subject data, ensuring a certain level of privacy and reducing regulatory hurdles. We proposed a novel approach called "Decentralized ComBat" which can harmonize datasets separately without combining the datasets. We tested our model by harmonizing functional network connectivity datasets from two traumatic brain injury studies in a decentralized way. Also, we used simulations to analyze the performance and scalability of our model when the number of data collection sites increases. We compare the output with centralized ComBat and show that the proposed approach produces similar results, increasing the sensitivity of the functional network connectivity analysis and validating our approach. Simulations show that our model can be easily scaled to many more datasets based on the requirement. In sum, we believe this provides a powerful tool, further complementing open data and allowing for integrating public and private datasets.

SELECTION OF CITATIONS
SEARCH DETAIL
...