Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 12: 1266842, 2024.
Article in English | MEDLINE | ID: mdl-38362040

ABSTRACT

Introduction: Maintenance of the intestinal barrier mainly relies on the mitochondrial function of intestinal epithelial cells that provide ATP through oxidative phosphorylation (OXPHOS). Dietary fatty acid overload might induce mitochondrial dysfunction of enterocytes and may increase intestinal permeability as indicated by previous in vitro studies with palmitic acid (C16:0). Yet the impact of other dietary saturated fatty acids remains poorly described. Methods: To address this question, the in vitro model of porcine enterocytes IPEC-J2 was treated for 3 days with 250 µM of lauric (C12:0), myristic (C14:0), palmitic (C16:0) or stearic (C18:0) acids. Results and discussion: Measurement of the transepithelial electrical resistance, reflecting tight junction integrity, revealed that only C16:0 and C18:0 increased epithelial permeability, without modifying the expression of genes encoding tight junction proteins. Bioenergetic measurements indicated that C16:0 and C18:0 were barely ß-oxidized by IPEC-J2. However, they rather induced significant OXPHOS uncoupling and reduced ATP production compared to C12:0 and C14:0. These bioenergetic alterations were associated with elevated mitochondrial reactive oxygen species production and mitochondrial fission. Although C12:0 and C14:0 treatment induced significant lipid storage and enhanced fusion of the mitochondrial network, it only mildly decreased ATP production without altering epithelial barrier. These results point out that the longer chain fatty acids C16:0 and C18:0 increased intestinal permeability, contrary to C12:0 and C14:0. In addition, C16:0 and C18:0 induced an important energy deprivation, notably via increased proton leaks, mitochondrial remodeling, and elevated ROS production in enterocytes compared to C12:0 and C14:0.

2.
Nanomedicine ; 40: 102499, 2022 02.
Article in English | MEDLINE | ID: mdl-34843982

ABSTRACT

Glioblastoma remains a cancer for which the effectiveness of treatments has shown little improvement over the last decades. For this pathology, multiple therapies combining resection, chemotherapy and radiotherapy remain the norm. In this context, the use of high-Z nanoparticles such as gold or hafnium to potentiate radiotherapy is attracting more and more attention. Here, we evaluate the potentiating effect of hollow shells made of gold and iron oxide nanoparticles (hybridosomes®) on the radiotherapy of glioblastoma, using murine GL261-Luc+ brain tumor model. While iron oxide seems to have no beneficial effect for radiotherapy, we observe a real effect of gold nanoparticles-despite their low amount-with a median survival increase of almost 20% compared to radiotherapy only and even 33% compared to the control group. Cellular and in vivo studies show that a molecule of interest nano-precipitated in the core of the hybridosomes® is released and internalized by the surrounding brain cells. Finally, in vivo studies show that hybridosomes® injected intra-tumorally are still present in the vicinity of the brain tumor more than 5 days after injection (duration of the Stupp protocol's radiation treatment). Interestingly, one mouse treated with radiotherapy in the presence of gold-containing hybridosomes® survived 78 days. Monitoring of the tumoral growth of this long-term survivor using both MRI and bioluminescence revealed a decrease of the tumor size after treatment. These very encouraging results are a proof-of-concept that hybridosomes® are really effective tools for the development of combined therapies (chemo-radiotherapy).


Subject(s)
Brain Neoplasms , Glioblastoma , Metal Nanoparticles , Nanocapsules , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/radiotherapy , Cell Line, Tumor , Glioblastoma/drug therapy , Glioblastoma/radiotherapy , Gold/therapeutic use , Metal Nanoparticles/therapeutic use , Mice , Nanocapsules/therapeutic use
3.
BMC Cancer ; 21(1): 530, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33971844

ABSTRACT

BACKGROUND: Osimertinib is a third generation tyrosine kinase inhibitor (TKI) that targets the epidermal growth factor receptor (EGFR) in lung cancer. However, although this molecule is not subject to some of the resistance mechanisms observed in response to first generation TKIs, ultimately, patients relapse because of unknown resistance mechanisms. New relevant non-small cell lung cancer (NSCLC) mice models are therefore required to allow the analysis of these resistance mechanisms and to evaluate the efficacy of new therapeutic strategies. METHODS: Briefly, PC-9 cells, previously modified for luciferase expression, were injected into the tail vein of mice. Tumor implantation and longitudinal growth, almost exclusively localized in the lung, were evaluated by bioluminescence. Once established, the tumor was treated with osimertinib until tumor escape and development of bone metastases. RESULTS: Micro-metastases were detected by bioluminescence and collected for further analysis. CONCLUSION: We describe an orthotopic model of NSCLC protocol that led to lung primary tumor nesting and, after osimertinib treatment, by metastases dissemination, and that allow the isolation of these small osimertinib-resistant micro-metastases. This model provides new biological tools to study tumor progression from the establishment of a lung tumor to the generation of drug-resistant micro-metastases, mimicking the natural course of the disease in human NSCLC patients.


Subject(s)
Acrylamides/therapeutic use , Aniline Compounds/therapeutic use , Bone Neoplasms/secondary , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Neoplasm Micrometastasis , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , ErbB Receptors/genetics , Humans , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mutation , Xenograft Model Antitumor Assays
5.
Cancers (Basel) ; 12(9)2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32872203

ABSTRACT

Inflammatory cytokines play a major role in myeloproliferative neoplasms (MPNs) as regulators of the MPN clone and as mediators of clinical symptoms and complications. Firstly, we investigated the effect of JAK2V617F on 42 molecules linked to inflammation. For JAK2V617F-mutated patients, the JAK2V617F allele burden (%JAK2V617F) correlated with the levels of IL-1ß, IL-1Rα, IP-10 and leptin in polycythemia vera (PV), and with IL-33 in ET; for all other molecules, no correlation was found. Cytokine production was also studied in the human megakaryocytic cell line UT-7. Wild-type UT-7 cells secreted 27/42 cytokines measured. UT-7 clones expressing 50% or 75% JAK2V617F were generated, in which the production of IL-1ß, IP-10 and RANTES was increased; other cytokines were not affected. Secondly, we searched for causes of chronic inflammation in MPNs other than driver mutations. Since antigen-driven selection is increasingly implicated in the pathogenesis of blood malignancies, we investigated whether proinflammatory glucosylsphingosine (GlcSph) may play a role in MPNs. We report that 20% (15/75) of MPN patients presented with anti-GlcSph IgGs, distinguished by elevated levels of 11 cytokines. In summary, only IL-1ß and IP-10 were linked to JAK2V617F both in patients and in UT-7 cells; other inflammation-linked cytokines in excess in MPNs were not. For subsets of MPN patients, a possible cause of inflammation may be auto-immunity against glucolipids.

6.
J Control Release ; 324: 430-439, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32439361

ABSTRACT

We investigate the encapsulation in hybridosomes®, a type of capsules unique regarding their structure and method of elaboration. Hybridosomes® are made of a single shell of inorganic nanoparticles (~5 nm) crosslinked with a polymer and are easily obtained via spontaneous emulsification in a ternary mixture THF/water/butylated hydroxytoluene (BHT). Our main finding is that an exceptionally high concentration of a hydrophobic model dye can be loaded in the hybridosomes®, up to 0.35 mol.L-1 or equivalently 170 g.L-1 or 450,000 molecules/capsule. The detailed investigation of the encapsulation mechanism shows that the dye concentrates in the droplets during the emulsification step simultaneously with capsule formation. Then it precipitates inside the capsules during the course of solvent evaporation. In vitro fluorescence measurements show that the nano-precipitated cargo can be transferred from the core of the hybridosomes® to the membrane of liposomes. In vivo studies suggest that the dye diffuses through the body during several days. The released dye tends to accumulate in body-fat, while the inorganic nanoparticles remain trapped into the liver and the spleen macrophages.


Subject(s)
Nanocapsules , Nanoparticles , Hydrophobic and Hydrophilic Interactions , Polymers , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...