Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(5): 3571-3589, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38385264

ABSTRACT

PAR4 is a promising antithrombotic target with potential for separation of efficacy from bleeding risk relative to current antiplatelet therapies. In an effort to discover a novel PAR4 antagonist chemotype, a quinoxaline-based HTS hit 3 with low µM potency was identified. Optimization of the HTS hit through the use of positional SAR scanning and the design of conformationally constrained cores led to the discovery of a quinoxaline-benzothiazole series as potent and selective PAR4 antagonists. The lead compound 48, possessing a 2 nM IC50 against PAR4 activation by γ-thrombin in platelet-rich plasma (PRP) and greater than 2500-fold selectivity versus PAR1, demonstrated robust antithrombotic efficacy and minimal bleeding in the cynomolgus monkey models.


Subject(s)
Fibrinolytic Agents , Thrombosis , Animals , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/therapeutic use , Macaca fascicularis , Quinoxalines/pharmacology , Quinoxalines/therapeutic use , Receptors, Thrombin , Thrombin , Hemorrhage , Thrombosis/drug therapy , Thrombosis/prevention & control , Receptor, PAR-1 , Blood Platelets , Platelet Aggregation
2.
J Med Chem ; 64(24): 18102-18113, 2021 12 23.
Article in English | MEDLINE | ID: mdl-34855405

ABSTRACT

This paper describes our continued efforts in the area of small-molecule apelin receptor agonists. Recently disclosed compound 2 showed an acceptable metabolic stability but demonstrated monodemethylation of the dimethoxyphenyl group to generate atropisomer metabolites in vitro. In this article, we extended the structure-activity relationship at the C2 position that led to the identification of potent pyrazole analogues with excellent metabolic stability. Due to the increased polarity at C2, the permeability for these compounds decreased. Further adjustment of the polarity by replacing the N1 2,6-dimethoxyphenyl group with a 2,6-diethylphenyl group and reoptimization for the potency of the C5 pyrroloamides resulted in potent compounds with improved permeability. Compound 21 displayed excellent pharmacokinetic profiles in rat, monkey, and dog models and robust pharmacodynamic efficacy in the rodent heart failure model. Compound 21 also showed an acceptable safety profile in preclinical toxicology studies and was selected as a backup development candidate for the program.


Subject(s)
Apelin Receptors/agonists , Heart Failure/drug therapy , Pyrimidinones/pharmacology , Animals , Dogs , Drug Discovery , Humans , Pyrimidinones/chemistry , Pyrimidinones/pharmacokinetics , Pyrimidinones/therapeutic use , Rats , Structure-Activity Relationship
3.
ACS Med Chem Lett ; 12(11): 1766-1772, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34795866

ABSTRACT

The apelin receptor (APJ) is a significant regulator of cardiovascular function and is involved in heart failure and other cardiovascular diseases. (Pyr1)apelin-13 is one of the endogenous agonists of the APJ receptor. Administration of (Pyr1)apelin-13 increases cardiac output in preclinical models and humans. Recently we disclosed clinical lead BMS-986224 (1), a C3 oxadiazole pyridinone APJ receptor agonist with robust pharmacodynamic effects similar to (Pyr1)apelin-13 in an acute rat pressure-volume loop model. Herein we describe the structure-activity relationship of the carboxamides as oxadiazole bioisosteres at C3 of the pyridinone core and C5 of the respective pyrimidinone core. This study led to the identification of structurally differentiated 6-hydroxypyrimidin-4(1H)-one-3-carboxamide 14a with pharmacodynamic effects comparable to those of compound 1.

4.
Bioorg Med Chem Lett ; 50: 128325, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34403724

ABSTRACT

Heart failure (HF) treatment remains a critical unmet medical need. Studies in normal healthy volunteers and HF patients have shown that [Pyr1]apelin-13, the endogenous ligand for the APJ receptor, improves cardiac function. However, the short half-life of [Pyr1]apelin-13 and the need for intravenous administration have limited the therapeutic potential for chronic use. We sought to identify potent, small-molecule APJ agonists with improved pharmaceutical properties to enable oral dosing in clinical studies. In this manuscript, we describe the identification of a series of pyrimidinone sulfones as a structurally differentiated series to the clinical lead (compound 1). Optimization of the sulfone series for potency, metabolic stability and oral bioavailability led to the identification of compound 22, which showed comparable APJ potency to [Pyr1]apelin-13 and exhibited an acceptable pharmacokinetic profile to advance to the acute hemodynamic rat model.


Subject(s)
Apelin Receptors/agonists , Cardiovascular Agents/pharmacology , Cardiovascular Agents/pharmacokinetics , Intercellular Signaling Peptides and Proteins/pharmacology , Animals , Area Under Curve , Cardiovascular Agents/chemical synthesis , Drug Design , Half-Life , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Macaca fascicularis , Molecular Structure , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Rats , Structure-Activity Relationship
5.
J Med Chem ; 64(6): 3086-3099, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33689340

ABSTRACT

Apelin-13 is an endogenous peptidic agonist of the apelin receptor (APJ) receptor with the potential for improving cardiac function in heart failure patients. However, the low plasma stability of apelin-13 necessitates continuous intravenous infusion for therapeutic use. There are several approaches to increase the stability of apelin-13 including attachment of pharmacokinetic enhancing groups, stabilized peptides, and Fc-fusion approaches. We sought a small-molecule APJ receptor agonist approach to target a compound with a pharmacokinetic profile amenable for chronic oral administration. This manuscript describes sequential optimization of the pyrimidinone series, leading to pyridinone 14, with in vitro potency equivalent to the endogenous ligand apelin-13 and with an excellent oral bioavailability and PK profile in multiple preclinical species. Compound 14 exhibited robust pharmacodynamic effects similar to apelin-13 in an acute rat pressure-volume loop model and was advanced as a clinical candidate.


Subject(s)
Apelin Receptors/agonists , Pyridones/chemistry , Pyridones/pharmacology , Animals , Apelin Receptors/metabolism , Dogs , Drug Discovery , Haplorhini , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Male , Models, Molecular , Pyridones/pharmacokinetics , Rats , Rats, Sprague-Dawley
6.
Sci Transl Med ; 9(371)2017 01 04.
Article in English | MEDLINE | ID: mdl-28053157

ABSTRACT

Antiplatelet agents are proven efficacious treatments for cardiovascular and cerebrovascular diseases. However, the existing drugs are compromised by unwanted and sometimes life-threatening bleeding that limits drug usage or dosage. There is a substantial unmet medical need for an antiplatelet drug with strong efficacy and low bleeding risk. Thrombin is a potent platelet agonist that directly induces platelet activation via the G protein (heterotrimeric guanine nucleotide-binding protein)-coupled protease-activated receptors PAR1 and PAR4. A PAR1 antagonist is approved for clinical use, but its use is limited by a substantial bleeding risk. Conversely, the potential of PAR4 as an antiplatelet target has not been well characterized. Using anti-PAR4 antibodies, we demonstrated a low bleeding risk and an effective antithrombotic profile with PAR4 inhibition in guinea pigs. Subsequently, high-throughput screening and an extensive medicinal chemistry effort resulted in the discovery of BMS-986120, an orally active, selective, and reversible PAR4 antagonist. In a cynomolgus monkey arterial thrombosis model, BMS-986120 demonstrated potent and highly efficacious antithrombotic activity. BMS-986120 also exhibited a low bleeding liability and a markedly wider therapeutic window compared to the standard antiplatelet agent clopidogrel tested in the same nonhuman primate model. These preclinical findings define the biological role of PAR4 in mediating platelet aggregation. In addition, they indicate that targeting PAR4 is an attractive antiplatelet strategy with the potential to treat patients at a high risk of atherothrombosis with superior safety compared with the current standard of care.


Subject(s)
Antibodies/therapeutic use , Fibrinolytic Agents/therapeutic use , Hemorrhage/drug therapy , Platelet Aggregation Inhibitors/therapeutic use , Receptors, Thrombin/antagonists & inhibitors , Administration, Oral , Animals , Blood Platelets/metabolism , Guinea Pigs , HEK293 Cells , Humans , Inhibitory Concentration 50 , Macaca fascicularis , Male , Protein Domains , Receptor, PAR-1/metabolism , Stroke/drug therapy , Thrombin/chemistry , Thrombosis , Treatment Outcome
7.
ChemMedChem ; 9(10): 2327-43, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24989964

ABSTRACT

Current antithrombotic discovery efforts target compounds that are highly efficacious in thrombus reduction with less bleeding liability than the standard of care. Preclinical data suggest that P2Y1 antagonists may have lower bleeding liabilities than P2Y12 antagonists while providing similar antithrombotic efficacy. This article describes our continuous SAR efforts in a series of 7-hydroxyindolinyl diaryl ureas. When dosed orally, 4-trifluoromethyl-7-hydroxy-3,3-dimethylindolinyl analogue 4 was highly efficacious in a model of arterial thrombosis in rats with limited bleeding. The chemically labile CF3 group in 4 was then transformed to various groups via a novel one-step synthesis, yielding a series of potent P2Y1 antagonists. Among them, the 4-benzothiazole-substituted indolines had desirable PK properties in rats, specifically, low clearance and small volume of distribution. In addition, compound 40 had high i.v. exposure and modest bioavailability, giving it the best overall profile.


Subject(s)
Purinergic P2Y Receptor Antagonists/pharmacology , Urea/analogs & derivatives , Animals , Humans , Magnetic Resonance Spectroscopy , Purinergic P2Y Receptor Antagonists/pharmacokinetics , Spectrometry, Mass, Electrospray Ionization , Urea/pharmacokinetics , Urea/pharmacology
8.
Bioorg Med Chem Lett ; 24(5): 1294-8, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24513044

ABSTRACT

Spiropiperidine indoline-substituted diaryl ureas had been identified as antagonists of the P2Y1 receptor. Enhancements in potency were realized through the introduction of a 7-hydroxyl substitution on the spiropiperidinylindoline chemotype. SAR studies were conducted to improve PK and potency, resulting in the identification of compound 3e, a potent, orally bioavailable P2Y1 antagonist with a suitable PK profile in preclinical species. Compound 3e demonstrated a robust antithrombotic effect in vivo and improved bleeding risk profile compared to the P2Y12 antagonist clopidogrel in rat efficacy/bleeding models.


Subject(s)
Phenylurea Compounds/chemistry , Platelet Aggregation Inhibitors/chemistry , Purinergic P2Y Receptor Antagonists/chemistry , Receptors, Purinergic P2Y1/chemistry , Thiazoles/chemistry , Urea/analogs & derivatives , Administration, Oral , Animals , Dogs , Half-Life , Macaca fascicularis , Phenylurea Compounds/pharmacokinetics , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/pharmacokinetics , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/therapeutic use , Purinergic P2Y Receptor Antagonists/pharmacokinetics , Purinergic P2Y Receptor Antagonists/pharmacology , Purinergic P2Y Receptor Antagonists/therapeutic use , Rats , Receptors, Purinergic P2Y1/metabolism , Structure-Activity Relationship , Thiazoles/pharmacokinetics , Thiazoles/pharmacology , Thiazoles/therapeutic use , Thrombosis/drug therapy , Urea/pharmacokinetics , Urea/pharmacology , Urea/therapeutic use
9.
J Med Chem ; 56(22): 9275-95, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24164581

ABSTRACT

Preclinical antithrombotic efficacy and bleeding models have demonstrated that P2Y1 antagonists are efficacious as antiplatelet agents and may offer a safety advantage over P2Y12 antagonists in terms of reduced bleeding liabilities. In this article, we describe the structural modification of the tert-butyl phenoxy portion of lead compound 1 and the subsequent discovery of a novel series of conformationally constrained ortho-anilino diaryl ureas. In particular, spiropiperidine indoline-substituted diaryl ureas are described as potent, orally bioavailable small-molecule P2Y1 antagonists with improved activity in functional assays and improved oral bioavailability in rats. Homology modeling and rat PK/PD studies on benchmark compound 3l will also be presented. Compound 3l was our first P2Y1 antagonist to demonstrate a robust oral antithrombotic effect with mild bleeding liability in the rat thrombosis and hemostasis models.


Subject(s)
Drug Design , Molecular Conformation , Phenylurea Compounds/pharmacology , Phenylurea Compounds/pharmacokinetics , Purinergic P2Y Receptor Antagonists/pharmacology , Purinergic P2Y Receptor Antagonists/pharmacokinetics , Receptors, Purinergic P2Y1/metabolism , Spiro Compounds/pharmacology , Spiro Compounds/pharmacokinetics , Urea/pharmacology , Urea/pharmacokinetics , Animals , Biological Availability , Humans , Indoles/chemistry , Models, Molecular , Phenylurea Compounds/chemistry , Phenylurea Compounds/metabolism , Purinergic P2Y Receptor Antagonists/chemistry , Purinergic P2Y Receptor Antagonists/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Purinergic P2Y1/chemistry , Sequence Homology, Amino Acid , Spiro Compounds/chemistry , Spiro Compounds/metabolism , Urea/chemistry , Urea/metabolism
10.
Bioorg Med Chem Lett ; 23(11): 3239-43, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23602442

ABSTRACT

Preclinical data suggests that P2Y1 antagonists, such as diarylurea compound 1, may provide antithrombotic efficacy similar to P2Y12 antagonists and may have the potential of providing reduced bleeding liabilities. This manuscript describes a series of diarylureas bearing solublizing amine side chains as potent P2Y1 antagonists. Among them, compounds 2l and 3h had improved aqueous solubility and maintained antiplatelet activity compared with compound 1. Compound 2l was moderately efficacious in both rat and rabbit thrombosis models and had a moderate prolongation of bleeding time in rats similar to that of compound 1.


Subject(s)
Fibrinolytic Agents/chemistry , Phenylurea Compounds/chemistry , Purinergic P2Y Receptor Antagonists/chemistry , Pyridines/chemistry , Receptors, Purinergic P2Y1/chemistry , Urea/chemistry , Animals , Caco-2 Cells , Disease Models, Animal , Drug Evaluation, Preclinical , Fibrinolytic Agents/chemical synthesis , Fibrinolytic Agents/pharmacokinetics , Half-Life , Humans , Microsomes, Liver/metabolism , Partial Thromboplastin Time , Phenylurea Compounds/pharmacokinetics , Phenylurea Compounds/therapeutic use , Platelet Aggregation/drug effects , Purinergic P2Y Receptor Antagonists/pharmacokinetics , Purinergic P2Y Receptor Antagonists/therapeutic use , Pyridines/pharmacokinetics , Pyridines/therapeutic use , Rabbits , Rats , Receptors, Purinergic P2Y1/metabolism , Solubility , Structure-Activity Relationship , Thrombosis/drug therapy , Urea/pharmacokinetics , Urea/therapeutic use , Water/chemistry
11.
J Med Chem ; 56(4): 1704-14, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23368907

ABSTRACT

Two distinct G protein-coupled purinergic receptors, P2Y1 and P2Y12, mediate ADP-driven platelet activation. The clinical effectiveness of P2Y12 blockade is well established. Recent preclinical data suggest that P2Y1 and P2Y12 inhibition provide equivalent antithrombotic efficacy, while targeting P2Y1 has the potential for reduced bleeding liability. In this account, the discovery of a 2-(phenoxypyridine)-3-phenylurea chemotype that inhibited ADP-mediated platelet aggregation in human blood samples is described. Optimization of this series led to the identification of compound 16, 1-(2-(2-tert-butylphenoxy)pyridin-3-yl)-3-4-(trifluoromethoxy)phenylurea, which demonstrated a 68 ± 7% thrombus weight reduction in an established rat arterial thrombosis model (10 mg/kg plus 10 mg/kg/h) while only prolonging cuticle and mesenteric bleeding times by 3.3- and 3.1-fold, respectively, in provoked rat bleeding time models. These results suggest that a P2Y1 antagonist could potentially provide a safe and efficacious antithrombotic profile.


Subject(s)
Fibrinolytic Agents/chemical synthesis , Phenylurea Compounds/chemical synthesis , Purinergic P2Y Receptor Antagonists/chemical synthesis , Pyridines/chemical synthesis , Urea/analogs & derivatives , Animals , Arterial Occlusive Diseases/blood , Arterial Occlusive Diseases/drug therapy , Bleeding Time , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/pharmacology , HEK293 Cells , Humans , Male , Phenylurea Compounds/chemistry , Phenylurea Compounds/pharmacology , Platelet Aggregation/drug effects , Purinergic P2Y Receptor Antagonists/chemistry , Purinergic P2Y Receptor Antagonists/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Rats , Structure-Activity Relationship , Thrombosis/blood , Thrombosis/drug therapy , Urea/chemical synthesis , Urea/chemistry , Urea/pharmacology
12.
Thromb Res ; 127(6): 560-4, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21396684

ABSTRACT

INTRODUCTION: Published evidence suggests that phosphoinositide 3 kinase-ß (PI3K-ß) plays an important role in platelet aggregation and shear activation. TGX-221 is a selective PI3K-ß inhibitor with a good separation of anti-thrombotic efficacy and bleeding (therapeutic index) in rats. Our goal was to further evaluate potential of a PI3K-ß inhibitor as an anti-thrombotic agent by determining the therapeutic index in another species and efficacy model. Reported effects of TGX-221 in rats were also confirmed. MATERIALS AND METHODS: TGX-221 (0.3 + 0.3, 1 + 1, 3 + 3 mg/kg + mg/kg/hr, i.v.) or vehicle was given to mice starting 15 min prior to FeCl(3) arterial thrombosis (AT), tail or kidney bleeding time (BT) procedures. RESULTS: Integrated blood flow over 30 min (%baseline mean ± SEM) improved (p < 0.05) with TGX-221 doses 1 + 1 (49 ± 13.9%) and 3+3 (88 ± 10.6%) versus 0.3 + 0.3 (10 ± 0.8%) and vehicle (10 ± 0.6%). Vascular patency (non-occluded/total arteries) improved (p < 0.01) with TGX-221 doses of 3 + 3 (7/8), but not 0.3 + 0.3 (0/8) or 1 + 1 (4/8) versus vehicle (0/8). Tail BT (sec) increased (p < 0.05) with TGX-221 doses of 3 + 3 (median 1560) and 1 + 1 (1305) versus vehicle (225). Mean renal BT (sec) increased (p < 0.05) in all TGX-221 groups (3 + 3: 510 + 26; 1 + 1: 478 + 41; 0.3 + 0.3: 246 + 37) versus vehicle (123 + 9). For comparison, a reference agent, aspirin (30 mpk, i.p.) increased tail BT 1.9X and renal BT 2.6X. CONCLUSIONS: The novel finding of a clear impact on hemostasis by TGX-221 was demonstrated by increased bleeding in two models in mice at anti-thrombotic doses. The results suggest a narrower therapeutic index for this PI3K-ß inhibitor than previously recognized, at least for this species.


Subject(s)
Blood Platelets/drug effects , Fibrinolytic Agents/pharmacology , Morpholines/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Pyrimidinones/pharmacology , Animals , Bleeding Time , Carotid Artery Thrombosis/blood , Carotid Artery Thrombosis/drug therapy , Carotid Artery Thrombosis/enzymology , Disease Models, Animal , Fibrinolytic Agents/blood , Fibrinolytic Agents/toxicity , Hemorrhage/chemically induced , Humans , Kidney/blood supply , Male , Mice , Mice, Inbred C57BL , Morpholines/blood , Morpholines/toxicity , Phosphatidylinositol 3-Kinases/blood , Pyrimidinones/blood , Pyrimidinones/toxicity , Rats , Rats, Sprague-Dawley , Tail/blood supply
13.
J Cardiovasc Pharmacol ; 55(6): 609-16, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20224421

ABSTRACT

Apixaban is an oral, direct, and highly selective factor Xa inhibitor in late-stage clinical development for the prevention and treatment of thromboembolic diseases. Apixaban was evaluated in rat thrombosis and hemostasis models. Thrombosis was produced in the carotid artery by FeCl2 application, in the vena cava by either FeCl2 application or tissue factor injection, and in an arterial-venous shunt. Hemostasis was assessed using cuticle, renal cortex, and mesenteric artery bleeding times. Intravenous apixaban infusions of 0.1, 0.3, 1, and 3 mg/kg per hour increased the ex vivo prothrombin time to 1.24, 1.93, 2.75, and 3.98 times control, respectively. The 0.3, 1, and 3-mg/kg per hour doses inhibited thrombosis in all models. Concentrations for 50% thrombus reduction ranged from 1.84 to 7.57 microM. The 3-mg/kg per hour dose increased cuticle, renal, and mesenteric bleeding times to 1.92, 2.13, and 2.98 times control, respectively. Lower doses had variable (1 mg/kg per hour) or no effect (0.1, 0.3 mg/kg per hour) on hemostasis. Heparin's prolongation of renal and cuticle bleeding time was twice that of apixaban when administered at a dose that approximated apixaban (3 mg/kg per hour) efficacy in arterial thrombosis. In summary, apixaban was effective in a broad range of thrombosis models at doses producing modest increases in multiple bleeding time models.


Subject(s)
Antithrombin III/therapeutic use , Thrombosis/drug therapy , Animals , Anticoagulants/therapeutic use , Bleeding Time , Blood Coagulation/drug effects , Blood Coagulation Disorders/drug therapy , Hemostasis/drug effects , Heparin/therapeutic use , Male , Prothrombin Time , Pyrazoles , Pyridones , Rats , Rats, Sprague-Dawley , Thrombosis/prevention & control
14.
Eur J Pharmacol ; 570(1-3): 167-74, 2007 Sep 10.
Article in English | MEDLINE | ID: mdl-17597608

ABSTRACT

The effect of inhibiting activated blood coagulation factor XIa was determined in rat models of thrombosis and hemostasis. BMS-262084 is an irreversible and selective small molecule inhibitor of factor XIa with an IC(50) of 2.8 nM against human factor XIa. BMS-262084 doubled the activated thromboplastin time in human and rat plasma at 0.14 and 2.2 microM, respectively. Consistent with factor XIa inhibition, the prothrombin time was unaffected at up to 100 microM. BMS-262084 administered as an intravenous loading plus sustaining infusion was effective against FeCl(2)-induced thrombosis in both the vena cava and carotid artery. Maximum thrombus weight reductions of 97 and 73%, respectively (P<0.05), were achieved at a pretreatment dose of 12 mg/kg+12 mg/kg/h which increased the ex vivo activated thromboplastin time to 3.0 times control. This dose level also arrested growth of venous and arterial thrombi when administered after partial thrombus formation. BMS-262084 was most potent in FeCl(2)-induced venous thrombosis, decreasing thrombus weight 38% (P<0.05) at a threshold dose of 0.2 mg/kg+0.2 mg/kg/h. In contrast, doses of up to 24 mg/kg+24 mg/kg/h had no effect on either tissue factor-induced venous thrombosis or the ex vivo prothrombin time. Doses of up to 24 mg/kg+24 mg/kg/h also did not significantly prolong bleeding time provoked by either puncture of small mesenteric blood vessels, template incision of the renal cortex, or cuticle incision. These results demonstrate that pharmacologic inhibition of factor XIa achieves antithrombotic efficacy with minimal effects on provoked bleeding.


Subject(s)
Azetidines/therapeutic use , Carotid Artery Thrombosis/drug therapy , Factor XIa/antagonists & inhibitors , Fibrinolytic Agents/therapeutic use , Hemostatics/therapeutic use , Piperazines/therapeutic use , Venous Thrombosis/drug therapy , Animals , Carotid Artery Thrombosis/physiopathology , Humans , Male , Partial Thromboplastin Time , Prothrombin Time , Rats , Rats, Sprague-Dawley , Tryptases/antagonists & inhibitors , Venous Thrombosis/physiopathology
15.
J Cardiovasc Pharmacol ; 49(5): 316-24, 2007 May.
Article in English | MEDLINE | ID: mdl-17513951

ABSTRACT

Target levels of ex vivo inhibition of platelet aggregation (IPA) induced by adenosine diphosphate (ADP) that produce clinically relevant effects of clopidogrel, a P2Y12 antagonist, are unclear. We examined standard and modified IPA and P2Y12 receptor occupancy as predictors of antithrombotic (% thrombus weight reduction) and bleeding time (BT, fold-increase over control) effects of clopidogrel in rabbit models of carotid artery thrombosis and cuticle bleeding, respectively. Standard and modified IPA with 20 microM ADP were measured in the absence and presence of partial P2Y1 blockade, respectively. Clopidogrel maximally produced standard IPA of 57% +/- 5%, antithrombotic effect of 85% +/- 1%, BT increase of 6.0 +/- 0.4-fold and P2Y12 receptor occupancy of 87% +/- 5%. Surprisingly, a clopidogrel dose that produced a low standard IPA of 17% +/- 4% and P2Y12 receptor occupancy of 39% +/- 5% achieved a significant antithrombotic activity of 55% +/- 2% with a moderate increase in BT of 2.0 +/- 0.1-fold. This underestimation of clopidogrel efficacy by standard IPA was improved by measuring either modified IPA or P2Y12 receptor occupancy. These results suggest that in clopidogrel-treated rabbits, low standard IPA is associated with significant antithrombotic effects. Moreover, modified IPA and P2Y12 receptor occupancy appear to better predict the magnitude of clopidogrel's efficacy compared with standard IPA, which may be a better predictor of BT.


Subject(s)
Blood Platelets/metabolism , Carotid Artery Thrombosis/prevention & control , Carotid Artery Thrombosis/physiopathology , Carotid Artery, Common/drug effects , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects , Receptors, Purinergic P2/metabolism , Ticlopidine/analogs & derivatives , Adenosine Diphosphate/metabolism , Adenosine Diphosphate/pharmacology , Analysis of Variance , Animals , Aspirin/pharmacology , Biomarkers/blood , Bleeding Time , Blood Platelets/drug effects , Carotid Artery Thrombosis/blood , Carotid Artery, Common/physiopathology , Clopidogrel , Disease Models, Animal , Dose-Response Relationship, Drug , Hemostasis/drug effects , Male , Predictive Value of Tests , Protein Binding/drug effects , Rabbits , Receptors, Purinergic P2/drug effects , Regional Blood Flow/drug effects , Thromboxane B2/blood , Ticlopidine/pharmacology
16.
J Pharmacol Exp Ther ; 322(1): 369-77, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17420297

ABSTRACT

We determined the dose response of the ADP antagonist clopidogrel (0.3-50 mg/kg p.o.) in rat models of thrombosis and provoked bleeding and correlated these activities to ex vivo platelet activation. Carotid artery thrombosis was induced by FeCl(2). Bleeding time was measured by mesenteric vessel puncture and renal cortex or cuticle incision. Platelet biomarkers included standard ADP-induced aggregation, P2Y(12) receptor occupancy, and phosphorylation of vasodilator-stimulated phosphoprotein. Clopidogrel decreased thrombus weight up to 78%, caused maximal prolongation of cuticle and mesenteric bleeding, but had little effect on renal bleeds. Due to the steep mesenteric dose response, further comparisons concentrated on cuticle bleeding. The half-maximal inhibitory dose (ED(50)) for thrombus reduction was 2.4 +/- 0.4 mg/kg, with 10 mg/kg providing optimal blood flow preservation and thrombus reduction. The ED(50) for bleeding was 10.5 +/- 3.4 mg/kg. Increased bleeding was intermediate (3-fold) at 10 mg/kg and maximal (6-fold) at 30 mg/kg. All biomarkers were affected, but with differing sensitivity. ED(50)s for peak platelet aggregation to 10 microM ADP (11.9 +/- 0.4 mg/kg) and the vasodilator-stimulated phosphoprotein index (16.4 +/- 1.3 mg/kg) approximated the higher ED(50) for bleeding. ED(50)s for ligand binding (3.0 +/- 0.3 mg/kg) and late aggregation (5.1 +/- 0.4 mg/kg) better matched the lower ED(50) for antithrombotic activity. Aspirin exerted lesser effects on bleeding (42-70% increase in all models) and thrombosis (24% inhibition). In summary, antithrombotic doses of clopidogrel have limited effects on bleeding and standard measures of platelet aggregation. Other biomarkers may be more sensitive for tracking antithrombotic efficacy.


Subject(s)
Fibrinolytic Agents/pharmacology , Hemostatics/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Ticlopidine/analogs & derivatives , Adenosine Diphosphate/pharmacology , Animals , Aspirin/pharmacology , Biomarkers , Cell Adhesion Molecules/metabolism , Clopidogrel , Dose-Response Relationship, Drug , Male , Membrane Proteins/metabolism , Microfilament Proteins/metabolism , Phosphoproteins/metabolism , Platelet Aggregation/drug effects , Rats , Rats, Sprague-Dawley , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2Y12 , Ticlopidine/pharmacology
17.
Thromb Res ; 120(4): 549-58, 2007.
Article in English | MEDLINE | ID: mdl-17229457

ABSTRACT

INTRODUCTION: TAFI indirectly reduces the action of tPA on plasminogen. Whether exogenous tPA is necessary for TAFI inhibitor efficacy is unclear. Potato carboxypeptidase inhibitor (PCI), a TAFI inhibitor, has shown variable tPA dependence in rat models of arteriovenous shunt thrombosis (required) and microthrombosis (not required). This study was designed to further explore the importance of exogenous tPA in revealing PCI activity in rat models of venous and arterial thrombosis and provoked bleeding. METHODS: PCI was given as a bolus (5, 10 mg/kg) +/- infusion (5, 10 mg/kg/h) and with or without low dose tPA (5, 10, 25 microg/kg/min). In each instance tPA was adjusted to produce subthreshold thrombus reduction. Arterial thrombosis was induced by FeCl2; venous thrombosis by tissue factor or FeCl2. Bleeding was induced by kidney incision with PCI given (5 mg + 5 mg/kg/h) in the presence or absence of tPA (10, 150, 200 microg/kg/min). RESULTS: PCI was ineffective without exogenous tPA in all tested thrombosis models. With exogenous tPA, PCI decreased thrombus weight 85% in tissue factor thrombosis, 59% in FeCl2 thrombosis, and 46% in arterial thrombosis. PCI prolonged bleeding only when combined with a relatively high tPA dose (200 microg/kg/min) that increased bleeding alone. CONCLUSIONS: If the current results predict clinical efficacy, the need for exogenous tPA in combination with TAFI inhibition is a potential problem. However, in acute settings where intravenous fibrinolytics are administered, or indications in which tPA production increases, TAFI inhibitors may prove to be safe and moderately effective profibrinolytic agents.


Subject(s)
Carboxypeptidase B2/antagonists & inhibitors , Thrombosis/drug therapy , Tissue Plasminogen Activator/pharmacology , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Interactions , Fibrinolytic Agents/pharmacology , Hemorrhage , Male , Plant Proteins/administration & dosage , Plant Proteins/pharmacology , Protease Inhibitors , Rats , Rats, Sprague-Dawley , Tissue Plasminogen Activator/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...