Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Biol ; 19(1): 141, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34256748

ABSTRACT

BACKGROUND: Left-right asymmetries are a common feature of metazoans and can be found in a number of organs including the nervous system. These asymmetries are particularly pronounced in the simple central nervous system (CNS) of the swimming tadpole larva of the tunicate Ciona, which displays a chordate ground plan. While common pathway elements for specifying the left/right axis are found among chordates, particularly a requirement for Nodal signaling, Ciona differs temporally from its vertebrate cousins by specifying its axis at the neurula stage, rather than at gastrula. Additionally, Ciona and other ascidians require an intact chorionic membrane for proper left-right specification. Whether such differences underlie distinct specification mechanisms between tunicates and vertebrates will require broad understanding of their influence on CNS formation. Here, we explore the consequences of disrupting left-right axis specification on Ciona larval CNS cellular anatomy, gene expression, synaptic connectivity, and behavior. RESULTS: We show that left-right asymmetry disruptions caused by removal of the chorion (dechorionation) are highly variable and present throughout the Ciona larval nervous system. While previous studies have documented disruptions to the conspicuously asymmetric sensory systems in the anterior brain vesicle, we document asymmetries in seemingly symmetric structures such as the posterior brain vesicle and motor ganglion. Moreover, defects caused by dechorionation include misplaced or absent neuron classes, loss of asymmetric gene expression, aberrant synaptic projections, and abnormal behaviors. In the motor ganglion, a brain structure that has been equated with the vertebrate hindbrain, we find that despite the apparent left-right symmetric distribution of interneurons and motor neurons, AMPA receptors are expressed exclusively on the left side, which equates with asymmetric swimming behaviors. We also find that within a population of dechorionated larvae, there is a small percentage with apparently normal left-right specification and approximately equal population with inverted (mirror-image) asymmetry. We present a method based on a behavioral assay for isolating these larvae. When these two classes of larvae (normal and inverted) are assessed in a light dimming assay, they display mirror-image behaviors, with normal larvae responding with counterclockwise swims, while inverted larvae respond with clockwise swims. CONCLUSIONS: Our findings highlight the importance of left-right specification pathways not only for proper CNS anatomy, but also for correct synaptic connectivity and behavior.


Subject(s)
Ciona , Animals , Brain , Central Nervous System , Larva/genetics , Neurons , Vertebrates
2.
Curr Biol ; 30(4): 600-609.e2, 2020 02 24.
Article in English | MEDLINE | ID: mdl-32008899

ABSTRACT

Larvae of the tunicate Ciona intestinalis possess a central nervous system of 177 neurons. This simplicity has facilitated the generation of a complete synaptic connectome. As chordates and the closest relatives of vertebrates, tunicates promise insight into the organization and evolution of vertebrate nervous systems. Ciona larvae have several sensory systems, including the ocellus and otolith, which are sensitive to light and gravity, respectively. Here, we describe circuitry by which these two are integrated into a complex behavior: the rapid reorientation of the body followed by upward swimming in response to dimming. Significantly, the gravity response causes an orienting behavior consisting of curved swims in downward-facing larvae but only when triggered by dimming. In contrast, the majority of larvae facing upward do not respond to dimming with orientation swims-but instead swim directly upward. Under constant light conditions, the gravity circuit appears to be inoperable, and both upward and downward swims were observed. Using connectomic and neurotransmitter data, we propose a circuit model that can account for these behaviors. The otolith consists of a statocyst cell and projecting excitatory sensory neurons (antenna cells). Postsynaptic to the antenna cells are a group of inhibitory primary interneurons, the antenna relay neurons (antRNs), which then project asymmetrically to the right and left motor units, thereby mediating curved orientation swims. Also projecting to the antRNs are inhibitory photoreceptor relay interneurons. These interneurons appear to antagonize the otolith circuit until they themselves are inhibited by photoreceptors in response to dimming, thus providing a triggering circuit.


Subject(s)
Ciona intestinalis/physiology , Swimming/physiology , Taxis Response , Animals , Central Nervous System/physiology , Ciona intestinalis/growth & development , Gravitation , Larva/growth & development , Larva/physiology , Neurons/physiology , Phototaxis
SELECTION OF CITATIONS
SEARCH DETAIL
...