Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 46(4): 139, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483690

ABSTRACT

Dye wastewater possess immense toxicity with carcinogenic properties and they persist in environment owing to their stability and resistance to chemical and photochemical changes. The bio degradability of dye-contaminated wastewater is low due to its complex molecular structure. Nano-photocatalysts based on zinc oxide are reported as one of the effective metal oxides for dye remediation due to their photostability, enhanced UV and visible absorption capabilities in an affordable manner. An electron-hole pair forms when electrons in the valence band of ZnO nano-photocatalyst transfer into the conduction band by absorbing UV light. The review article presents a detailed review on ZnO applications for treating acidic and basic dyes along with the dye degradation performance based on operating conditions and photocatalytic kinetic models. Several acidic and basic dyes have been shown to degrade efficiently using ZnO and its nanocomposites. Higher removal percentages for crystal violet was reported at pH 12 by ZnO/Graphene oxide catalyst under 400 nm UV light, whereas acidic dye Rhodamine B at a pH of 5.8 was degraded to 100% by pristine ZnO. The mechanism of action of ZnO nanocatalysts in degrading the dye contamination are reported and the research gaps to make these agents in environmental remediation on real time operations are discussed.


Subject(s)
Nanocomposites , Zinc Oxide , Coloring Agents/chemistry , Wastewater , Oxides/chemistry , Nanocomposites/chemistry , Catalysis
2.
Environ Res ; 248: 118212, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38272293

ABSTRACT

Chlorpyrifos (CPF) is a highly toxic phosphate-rich organic pesticide (OP), identified as an emerging contaminant and used extensively in agricultural production. CPF persistence in the environment and its potential health hazards has become increasingly concerning worldwide in recent years due to exponential rise in food demand. Biodegradation of chlorpyrifos by microbial cultures is a promising approach to reclaiming contaminated soil and aquatic environments. The purpose of this review is to summarize the current understanding of microbiological aspects of xenobiotic chlorpyrifos biodegradation, including microbial diversity, metabolic pathways, and factors that modulate it. In both aerobic and anaerobic environments, CPF is biochemically broken down by a broad spectrum of bacteria and fungi. Hydrolysis, dehalogenation, and oxidation of chlorpyrifos are all enzymatic reactions that lead to its degradation. Biodegradation rate and efficiency are strongly influenced by parametric variables such as co-substrates abundance, pH, temperature, and initial chlorpyrifos concentration. The review provides evidence that microbial biodegradation is a viable method for remediating chlorpyrifos-contaminated sites in a sustainable and safe manner.


Subject(s)
Chlorpyrifos , Insecticides , Chlorpyrifos/metabolism , Insecticides/toxicity , Agriculture , Bacteria/metabolism , Biodegradation, Environmental
3.
Chemosphere ; 345: 140471, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37871875

ABSTRACT

The rapid consumption of metals and unorganized disposal have led to unprecedented increases in heavy metal ion concentrations in the ecosystem, which disrupts environmental homeostasis and results in agricultural biodiversity loss. Mitigation and remediation plans for heavy metal pollution are largely dependent on the discovery of cost-effective, biocompatible, specific, and robust detectors because conventional methods involve sophisticated electronics and sample preparation procedures. Carbon dots (CDs) have gained significant importance in sensing applications related to environmental sustainability. Fluorescence sensor applications have been enhanced by their distinctive spectral properties and the potential for developing efficient photonic devices. With the recent development of biomass-functionalized carbon dots, a wide spectrum of multivalent and bivalent transition metal ions responsible for water quality degradation can be detected with high efficiency and minimal toxicity. This review explores the various methods of manufacturing carbon dots and the biochemical mechanisms involved in metal detection using green carbon dots for sensing applications involving Cu (II), Fe (III), Hg (II), and Cr (VI) ions in aqueous systems. A detailed discussion of practical challenges and future recommendations is presented to identify feasible design routes.


Subject(s)
Metals, Heavy , Quantum Dots , Carbon/chemistry , Biomass , Ecosystem , Quantum Dots/chemistry , Ions
4.
Environ Res ; 216(Pt 2): 114629, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36279909

ABSTRACT

Selenium is targeted as a priority pollutant to be removed due to its high toxicity level and lethal effects. In this research, a novel nano sorbent was fabricated using ionic liquid on multiwalled carbon nanotubes (IL-MCNT) and employed for Selenium remediation from aqueous media. Besides solution pH, nanocomposite dosage, the initial selenium concentration, temperature and sorption time were also examined as operating variables. At optimal pH 2.0, 96% of the selenium was removed with maximum efficiency with 100 mg/L of IL-MCNT at 308 K, 45 min of contact time, and 110 g of IL-MCNT dosage. From kinetic studies, it appears that the Langmuir isotherm fits the observed data (R2 > 0.9813), supporting the hypothesis that monolayer attachment occurs. The Langmuir isotherm parameters are evaluated as qm = 125 mg/g and KL = 0.172 L/mg. As a result of testing several kinetic models, the pseudo-second-order model was the most suitable for experimental data (R2 > 0.9746). Scanning Electron Microscopy images, FTIR spectra, and thermogravimetric study were used to examine the synthesized nanomaterial.


Subject(s)
Environmental Restoration and Remediation , Nanotubes, Carbon , Selenium , Water Pollutants, Chemical , Kinetics , Adsorption , Thermodynamics , Hydrogen-Ion Concentration
5.
Environ Res ; 213: 113720, 2022 10.
Article in English | MEDLINE | ID: mdl-35738419

ABSTRACT

Lead and Cadmium, identified as toxic heavy metals, cause significant imbalance in the eco-system due to their tendency to bioaccumulate. Remediation of heavy metals by conventional adsorptive materials suffer demerits related to low efficiency or removal. Among the variety of adsorbent materials used in the adsorption process, metal oxides- and graphene oxide magnetic nanocomposites have gained a considerable attention. The use of nanomaterials may help to reduce this contamination, but after use, they are difficult to remove from water. An added magnetic property to nanomaterials facilitates their retrieval after use. The magnetic properties of these hybrid magnetic nanocomposites, coupled with unique characteristics of organic and inorganic elements, have found extensive application in water treatment technology. Detailed discussion on functionalisation of magnetic nanocomposites and the enhanced performance are presented. Magnetic graphene oxide-covalently functionalized-tryptophan was reported to have the highest adsorption capacity of 766.1 mg/g for remediation of lead (II) ions and graphene oxide exhibited the highest adsorption capacity of 530 mg/g for Cd (II) ions. The adsorption mechanisms for heavy metal ions on the surface of novel adsorbents, particularly lead and cadmium, using magnetic nanocomposites have been explained with reference to the isotherm models studied. The future scope of research in this area of research is proposed.


Subject(s)
Metals, Heavy , Nanocomposites , Water Pollutants, Chemical , Water Purification , Adsorption , Cadmium , Ions , Kinetics , Lead , Magnetic Phenomena , Porosity , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...