Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38659767

ABSTRACT

Cerebral amyloid angiopathy (CAA) is a vasculopathy characterized by vascular ß-amyloid (Aß) deposition on cerebral blood vessels. CAA is closely linked to Alzheimer's disease (AD) and intracerebral hemorrhage. CAA is associated with the loss of autoregulation in the brain, vascular rupture, and cognitive decline. To assess morphological and molecular changes associated with the degeneration of penetrating arterioles in CAA, we analyzed post-mortem human brain tissue from 26 patients with mild, moderate, and severe CAA end neurological controls. The tissue was optically cleared for three-dimensional light sheet microscopy, and morphological features were quantified using surface volume rendering. We stained Aß, vascular smooth muscle (VSM), lysyl oxidase (LOX), and vascular markers to visualize the relationship between degenerative morphological features, including vascular dilation, dolichoectasia (variability in lumenal diameter) and tortuosity, and the volumes of VSM, Aß, and LOX in arterioles. Atomic force microscopy (AFM) was used to assess arteriolar wall stiffness, and we identified a pattern of morphological features associated with degenerating arterioles in the cortex. The volume of VSM associated with the arteriole was reduced by around 80% in arterioles with severe CAA and around 60% in cases with mild/moderate CAA. This loss of VSM correlated with increased arteriolar diameter and variability of diameter, suggesting VSM loss contributes to arteriolar laxity. These vascular morphological features correlated strongly with Aß deposits. At sites of microhemorrhage, Aß was consistently present, although the morphology of the deposits changed from the typical organized ring shape to sharply contoured shards with marked dilation of the vessel. AFM showed that arteriolar walls with CAA were more than 400% stiffer than those without CAA. Finally, we characterized the association of vascular degeneration with LOX, finding strong associations with VSM loss and vascular degeneration. These results show an association between vascular Aß deposition, microvascular degeneration, and increased vascular stiffness, likely due to the combined effects of replacement of VSM by ß-amyloid, cross-linking of extracellular matrices (ECM) by LOX, and possibly fibrosis. This advanced microscopic imaging study clarifies the association between Aß deposition and vascular fragility. Restoration of physiologic ECM properties in penetrating arteries may yield a novel therapeutic strategy for CAA.

2.
Cell Mol Bioeng ; 15(1): 31-42, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35096185

ABSTRACT

INTRODUCTION: Vascular endothelial cells respond to a variety of biophysical cues such as shear stress and substrate stiffness. In peripheral vasculature, extracellular matrix (ECM) stiffening alters barrier function, leading to increased vascular permeability in atherosclerosis and pulmonary edema. The effect of ECM stiffness on blood-brain barrier (BBB) endothelial cells, however, has not been explored. To investigate this topic, we incorporated hydrogel substrates into an in vitro model of the human BBB. METHODS: Induced pluripotent stem cells were differentiated to brain microvascular endothelial-like (BMEC-like) cells and cultured on hydrogel substrates of varying stiffness. Cellular changes were measured by imaging, functional assays such as transendothelial electrical resistance (TEER) and p-glycoprotein efflux activity, and bulk transcriptome readouts. RESULTS: The magnitude and longevity of TEER in iPSC-derived BMEC-like cells is enhanced on compliant substrates. Quantitative imaging shows that BMEC-like cells form fewer intracellular actin stress fibers on substrates of intermediate stiffness (20 kPa relative to 1 and 150 kPa). Chemical induction of actin polymerization leads to a rapid decline in TEER, agreeing with imaging readouts. P-glycoprotein activity is unaffected by substrate stiffness. Modest differences in RNA expression corresponding to specific signaling pathways were observed as a function of substrate stiffness. CONCLUSIONS: iPSC-derived BMEC-like cells exhibit differences in passive but not active barrier function in response to substrate stiffness. These findings may provide insight into BBB dysfunction during neurodegeneration, as well as aid in the optimization of more complex three-dimensional neurovascular models utilizing compliant hydrogels. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12195-021-00706-8.

3.
ACS Biomater Sci Eng ; 6(10): 5811-5822, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33320550

ABSTRACT

In vitro models of the human central nervous system (CNS), particularly those derived from induced pluripotent stem cells (iPSCs), are becoming increasingly recognized as useful complements to animal models for studying neurological diseases and developing therapeutic strategies. However, many current three-dimensional (3D) CNS models suffer from deficits that limit their research utility. In this work, we focused on improving the interactions between the extracellular matrix (ECM) and iPSC-derived neurons to support model development. The most common ECMs used to fabricate 3D CNS models often lack the necessary bioinstructive cues to drive iPSC-derived neurons to a mature and synaptically connected state. These ECMs are also typically difficult to pattern into complex structures due to their mechanical properties. To address these issues, we functionalized gelatin methacrylate (GelMA) with an N-cadherin (Cad) extracellular peptide epitope to create a biomaterial termed GelMA-Cad. After photopolymerization, GelMA-Cad forms soft hydrogels (on the order of 2 kPa) that can maintain patterned architectures. The N-cadherin functionality promotes survival and maturation of single-cell suspensions of iPSC-derived glutamatergic neurons into synaptically connected networks as determined by viral tracing and electrophysiology. Immunostaining reveals a pronounced increase in presynaptic and postsynaptic marker expression in GelMA-Cad relative to Matrigel, as well as extensive colocalization of these markers, thus highlighting the biological activity of the N-cadherin peptide. Overall, given its ability to enhance iPSC-derived neuron maturity and connectivity, GelMA-Cad should be broadly useful for in vitro studies of neural circuitry in health and disease.


Subject(s)
Hydrogels , Induced Pluripotent Stem Cells , Animals , Cadherins , Gelatin , Humans , Neural Networks, Computer
4.
Stem Cell Reports ; 12(3): 474-487, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30773484

ABSTRACT

There is a profound need for functional, biomimetic in vitro tissue constructs of the human blood-brain barrier and neurovascular unit (NVU) to model diseases and identify therapeutic interventions. Here, we show that induced pluripotent stem cell (iPSC)-derived human brain microvascular endothelial cells (BMECs) exhibit robust barrier functionality when cultured in 3D channels within gelatin hydrogels. We determined that BMECs cultured in 3D under perfusion conditions were 10-100 times less permeable to sodium fluorescein, 3 kDa dextran, and albumin relative to human umbilical vein endothelial cell and human dermal microvascular endothelial cell controls, and the BMECs maintained barrier function for up to 21 days. Analysis of cell-cell junctions revealed expression patterns supporting barrier formation. Finally, efflux transporter activity was maintained over 3 weeks of perfused culture. Taken together, this work lays the foundation for development of a representative 3D in vitro model of the human NVU constructed from iPSCs.


Subject(s)
Blood-Brain Barrier/drug effects , Brain/drug effects , Endothelial Cells/drug effects , Endothelium/drug effects , Hydrogels/pharmacology , Induced Pluripotent Stem Cells/drug effects , Albumins/metabolism , Blood-Brain Barrier/metabolism , Brain/metabolism , Cells, Cultured , Dextrans/metabolism , Endothelial Cells/metabolism , Endothelium/metabolism , Fluorescein/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Microvessels/drug effects , Microvessels/metabolism
5.
Article in English | MEDLINE | ID: mdl-29441348

ABSTRACT

The neurovascular unit (NVU) is composed of neurons, astrocytes, pericytes, and endothelial cells that form the blood-brain barrier (BBB). The NVU regulates material exchange between the bloodstream and the brain parenchyma, and its dysfunction is a primary or secondary cause of many cerebrovascular and neurodegenerative disorders. As such, there are substantial research thrusts in academia and industry toward building NVU models that mimic endogenous organization and function, which could be used to better understand disease mechanisms and assess drug efficacy. Human pluripotent stem cells, which can self-renew indefinitely and differentiate to almost any cell type in the body, are attractive for these models because they can provide a limitless source of individual cells from the NVU. In addition, human-induced pluripotent stem cells (iPSCs) offer the opportunity to build NVU models with an explicit genetic background and in the context of disease susceptibility. Herein, we review how iPSCs are being used to model neurovascular and neurodegenerative diseases, with particular focus on contributions of the BBB, and discuss existing technologies and emerging opportunities to merge these iPSC progenies with biomaterials platforms to create complex NVU systems that recreate the in vivo microenvironment.

SELECTION OF CITATIONS
SEARCH DETAIL
...