Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Environ Res ; 198: 106557, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38823094

ABSTRACT

Sexual reproduction of reef-building corals is vital for coral reef ecosystem recovery. Corals allocate limited energy to growth and reproduction, when being under environmental disturbance, which ultimately shapes the community population dynamics. In the present study, energetic and physiological parameters of both parental colonies and larvae of the coral Pocillopora damicornis were measured during their reproduction stage under four temperatures; 28 °C (low-temperature acclimation, LA), 29 °C (control temperature, CT), 31 °C (high-temperature acclimation, HA), and 32 °C (heat stress, HS). The results showed temperature changes altered the larvae release timing and fecundity in P. damicornis. Parental colonies exposed to the LA treatment exhibited reduced investment in reproduction and released fewer larvae, while retaining more energy for their development. However, each larva acquired higher energy and symbiont densities enabling survival through longer planktonic periods before settlement. In contrast, parental colonies exposed to the HA treatment had increased investment for reproduction and larvae output, while per larva gained less energy to mitigate the threat of higher temperature. Furthermore, the energy allocation processes restructured fatty acids concentration and composition in both parental colonies and larvae as indicated by shifts in membrane fluidity under adaptable temperature changes. Notably, parental colonies from the HS treatment expended more energy in response to heat stress, resulting in adverse effects, especially after larval release. Our study expands the current knowledge on the energy allocation strategies of P. damicornis and how it is impacted by temperature. Parental colonies employed different energy allocation strategies under distinct temperature regimes to optimize their development and offspring success, but under heat stress, both were compromised. Lipid metabolism is essential for the success of coral reproduction and further understanding their response to heat stress can improve intervention strategies for coral reef conservation in warmer future oceans.


Subject(s)
Anthozoa , Energy Metabolism , Reproduction , Temperature , Animals , Anthozoa/physiology , Coral Reefs , Larva/physiology , Larva/growth & development , Acclimatization/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...