Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Front Physiol ; 15: 1321160, 2024.
Article in English | MEDLINE | ID: mdl-38681143

ABSTRACT

Purpose: Molecular hydrogen has been shown to possess antioxidant, anti-inflammatory, ergogenic, and recovery-enhancing effects. This study aimed to assess the effect of molecular hydrogen administration on muscle performance, damage, and perception of soreness up to 24 h of recovery after two strenuous training sessions performed on the same day in elite fin swimmers. Methods: Eight females (mean ± SD; age 21.5 ± 5.0 years, maximal oxygen consumption 45.0 ± 2.5 mL.kg-1.min-1) and four males (age 18.9 ± 1.3 years, maximal oxygen consumption 52.2 ± 1.7 mL.kg-1.min-1) performed 12 × 50 m sprints in the morning session and a 400 m competitive performance in the afternoon session. Participants consumed hydrogen-rich water (HRW) or placebo 3 days before the sessions (1,260 mL/day) and 2,520 mL on the experimental day. Muscle performance (countermovement jump), muscle damage (creatine kinase), and muscle soreness (100 mm visual analogue scale) were measured during the experimental day and at 12 and 24 h after the afternoon session. Results: HRW compared to placebo reduced blood activity of creatine kinase (156 ± 63 vs. 190 ± 64 U.L-1, p = 0.043), muscle soreness perception (34 ± 12 vs. 42 ± 12 mm, p = 0.045), and improved countermovement jump height (30.7 ± 5.5 cm vs. 29.8 ± 5.8 cm, p = 0.014) at 12 h after the afternoon session. Conclusion: Four days of HRW supplementation is a promising hydration strategy for promoting muscle recovery after two strenuous training sessions performed on the same day in elite fin swimmers. Clinical Trial Registration: clinicaltrials.gov, identifier NCT05799911.

2.
Cent Eur J Public Health ; 31(1): 38-42, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37086419

ABSTRACT

OBJECTIVES: In 2020, measures against the spread of COVID-19 were adopted, including nationwide school closures, restrictions on the free movement of persons and leisure time sports activities. The aim was to assess the impact of COVID-19-associated restrictions on the performance of paediatric and adolescent competitive athletes by comparing basic anthropometric and performance parameters. METHODS: The sample comprised 389 participants (115 girls, 274 boys). All participants were examined during regular preventive sports health checks from September to November 2019 and a year later. At the initial examination, the mean age of the entire sample was 12.2 ± 2.7 years (median 12.0, minimum 7.0; maximum 17.0). The examination consisted of a complete medical history and physical examination including maximal exercise testing on a leg cycle ergometer. RESULTS: In the entire sample, as well as in the boy and girl subgroups, body height, weight, body mass index (BMI), BMI percentile, and power output significantly increased according to a percentile graph for boys and girls in 2020. A reduction in power output (W/kg) was found. By 2020, W/kg dropped in 56.4% of the youngest participants (7-13 years), 75% of those aged 14-16 years and 64.9% of the oldest individuals (16-17 years). The percentage of the youngest children with power output reductions was statistically significantly lower than the percentages of the other age subgroups (p = 0.007). There were no significant differences in results between genders. CONCLUSIONS: Performance and anthropometric parameters worsened especially among older children. This should be reflected when planning epidemic measures in case of any similar situation in the future.


Subject(s)
COVID-19 , Pandemics , Adolescent , Humans , Child , Male , Female , Czech Republic/epidemiology , COVID-19/epidemiology , Anthropometry/methods , Body Mass Index , Athletes
3.
PLoS One ; 17(12): e0279307, 2022.
Article in English | MEDLINE | ID: mdl-36538554

ABSTRACT

PURPOSE: This study investigated the effects of acute, pre-exercise, hydrogen rich water (HRW) ingestion on running time to exhaustion at maximal aerobic speed in trained track and field runners. METHODS: Twenty-four, male runners aged 17.5 ± 1.8 years, with body mass index = 21.0 ± 1.3 kg⋅m-2, and maximal oxygen uptake = 55.0 ± 4.6 ml⋅kg-1⋅min-1 (mean ± standard deviation) participated in this randomized, double-blind, placebo-controlled crossover study. All runners ingested 1260 ml of HRW which was divided into four doses and taken at 120 min (420 ml), 60 min (420 ml), 30 min (210 ml), and 10 min (210 ml) prior to exercise. The running protocol consisted of three phases: warm-up performed at 10 km⋅h-1 for 3 min, followed by a transition phase performed at an individually determined speed (10 km⋅h-1 + maximal aerobic speed)/2 for 1 min, and finally the third phase performed at individual maximal aerobic speed until exhaustion. Time to exhaustion, cardiorespiratory variables, and post-exercise blood lactate concentration were measured. RESULTS: When running to exhaustion at maximal aerobic speed, compared with placebo, HRW had no significant effects on the following variables: time to exhaustion (217 ± 49 and 227 ± 53 s, p = 0.20), post-exercise blood lactate concentration (9.9 ± 2.2 and 10.1 ± 2.0 mmol⋅L-1, p = 0.42), maximal heart rate (186 ± 9 and 186 ± 9 beats⋅min-1, p = 0.80), and oxygen uptake (53.1 ± 4.5 and 52.2 ± 4.7 ml⋅kg-1⋅min-1, p = 0.33). No variable assessed as a candidate moderator was significantly correlated with time to exhaustion (Spearman's correlation coefficients ranged from -0.28 to 0.30, all p ≥ 0.16). CONCLUSIONS: Pre-exercise administration of 1260 ml of HRW showed no ergogenic effect on running performance to exhaustion at maximal aerobic speed in trained track and field runners.


Subject(s)
Physical Endurance , Track and Field , Male , Humans , Cross-Over Studies , Oxygen Consumption , Drinking , Lactic Acid , Double-Blind Method , Oxygen/pharmacology , Hydrogen/pharmacology
4.
J Hum Kinet ; 82: 101-110, 2022 Apr.
Article in English | MEDLINE | ID: mdl-36157002

ABSTRACT

The objective of this cross-sectional study was to evaluate the hydration status of Czech First League soccer players, and to compare the reported fluid intake, perceived fluid intake and thirst sensation of euhydrated (EU) and dehydrated (DE) players. The study involved 124 Czech male professional soccer players (age 25.2±5.0 years) participating in annual winter, pre-season laboratory testing. Hydration status was assessed based on urine specific gravity (USG), euhydration was set at USG≤1.020. Fluid intake and thirst perception were evaluated by a questionnaire. The sample mean for USG was 1.021±0.008, 56% of players were dehydrated. Reported daily fluid intake was significantly (p<0.001, d=0.95, large effect) higher in EU compared to DE players. Daily fluid intake negatively correlated with USG (rS=-0.46, p<0.001, medium effect). The fluid intake perception score was significantly (p=0.005, d=0.54, medium effect) better in EU compared to DE players. Reported intake perception scores negatively correlated with USG (rS=-0.32, p<0.001, medium effect). However, there was no correlation (rS=-0.09, p=0.34, trivial effect) between thirst perception scores and USG. Thirst perception scores were not significantly different between EU and DE players (p=0.35, d=0.18, trivial effect). Our results indicated that self-assessment of both daily fluid intake and perceived fluid intake matched with objective hydration status, while self-assessment of thirst perception was not an appropriate indicator of hydration status in elite soccer players.

5.
Healthcare (Basel) ; 10(6)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35742075

ABSTRACT

BACKGROUND: Vibroacoustic therapy (VAT) uses low-frequency sound, often combined with listening to music, for therapeutic purposes. However, the impact of low-frequency vibration (LFV) on physiological functions and subjective perception is relatively unknown. METHODS: We conducted a randomized cross-over study with the aim of comparing the effect of constant LFV of 40 Hz, its amplitude modulation, and the placebo condition on heart rate variability (HRV), stress perception (measured by visual analogue scales for stress) and mood (measured by UWIST Mood Adjective Check List). RESULTS: Research experiments with various interventions (constant LFV with sound of nature (river in forest), amplitude modulation of the same LFV with sounds of nature and sounds of nature without LFV) were realised involving 24 participants. It was found there was an effect on HRV, stress perception and mood after the interventions. However, there were only seldomly experienced, and mostly nonsignificant, differences between the intervention conditions, so the effects may be attributed to factors other than LFV. CONCLUSIONS: Large scale experimental studies are needed to verify the preliminary findings and to explore various coinciding factors that may have influenced the results of this study, e.g., type of autonomic nervous system. We propose that the effect of LFV exposure may differ when combined with listening to music, and this hypothesis should be investigated in future studies.

6.
Nutrients ; 14(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35276867

ABSTRACT

Hydrogen-rich water (HRW) supplementation has been shown to have an antifatigue effect across different modes of exercise. However, its effect on repeated sprint performance is unknown. The aim of this study was to assess the effect of pre-exercise HRW consumption on repeated sprint performance, lactate, and perceptual responses using a repeated sprint protocol. This randomized, double blinded, placebo controlled, crossover study included 16 professional, male soccer players aged 18.8 ± 1.2 years. Athletes performed two indoor tests, particularly 15 × 30 m track sprints interspersed by 20 s of recovery, separated by a 1-week washout period. Sprint time was measured at 15 m and 30 m. Ratings of perceived exertion were assessed immediately after each sprint, and post-exercise blood lactate concentration was measured after the last sprint. There were significantly faster sprint times after HRW consumption compared with placebo at 15 m for the 14th and 15th sprints, representing improvements in time of 3.4% and 2.7%, respectively. Sprint time at 30 m also significantly improved by 1.9% in the HRW group in the last sprint. However, neither lactate concentrations nor ratings of perceived exertion were significantly different between HRW and placebo. Pre-exercise HRW supplementation is associated with an increased ability to reduce fatigue, especially during the later stages of repeated sprint exercise.


Subject(s)
Athletic Performance , Running , Soccer , Adolescent , Adult , Athletic Performance/physiology , Cross-Over Studies , Humans , Hydrogen , Lactic Acid , Male , Running/physiology , Soccer/physiology , Young Adult
7.
Article in English | MEDLINE | ID: mdl-35206179

ABSTRACT

Molecular hydrogen (H2) is potentially a novel therapeutic gas for acute post-coronavirus disease 2019 (COVID-19) patients because it has antioxidative, anti-inflammatory, anti-apoptosis, and antifatigue properties. The aim of this study was to determine the effect of 14 days of H2 inhalation on the respiratory and physical fitness status of acute post-COVID-19 patients. This randomized, single-blind, placebo-controlled study included 26 males (44 ± 17 years) and 24 females (38 ± 12 years), who performed a 6-min walking test (6 MWT) and pulmonary function test, specifically forced vital capacity (FVC) and expiratory volume in the first second (FEV1). Symptomatic participants were recruited between 21 and 33 days after a positive polymerase chain reaction test. The experiment consisted of H2/placebo inhalation, 2 × 60 min/day for 14 days. Results showed that H2 therapy, compared with placebo, significantly increased 6 MWT distance by 64 ± 39 m, FVC by 0.19 ± 0.24 L, and, in FEV1, by 0.11 ± 0.28 L (all p ≤ 0.025). In conclusion, H2 inhalation had beneficial health effects in terms of improved physical and respiratory function in acute post-COVID-19 patients. Therefore, H2 inhalation may represent a safe, effective approach for accelerating early function restoration in post-COVID-19 patients.


Subject(s)
COVID-19 , Female , Forced Expiratory Volume , Humans , Hydrogen/therapeutic use , Male , Respiratory Function Tests , SARS-CoV-2 , Single-Blind Method
8.
J Strength Cond Res ; 36(10): 2792-2799, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-33555824

ABSTRACT

ABSTRACT: Botek, M, Krejcí, J, McKune, A, Valenta, M, and Sládecková, B. Hydrogen rich water consumption positively affects muscle performance, lactate response, and alleviates delayed onset of muscle soreness after resistance training. J Strength Cond Res 36(10): 2792-2799, 2022-Positive outcomes of hydrogen rich water (HRW) supplementation on endurance performance have been shown, but the effects of HRW in resistance training are unclear. The aim of this study was to assess the effects of 1,260 ml of HRW intake on physiological, perceptual, and performance responses to a resistance training and after 24 hours of recovery. This randomized, double-blinded placebo-controlled cross-over study included 12 men aged 23.8 ± 1.9 years. Subjects performed a half squat, knee flexion, and extension exercises with the load set at 70% of 1 repetition maximum for 3 sets (10 reps/set). Lunges were performed with a load of 30% of body mass for 3 sets (20 reps/set). Time of each set, lactate, and ratings of perceived exertion were assessed mid-way through exercise and immediately after the exercise. Creatine kinase, muscle soreness visual analog scale ratings, countermovement jump, and heart rate variability were evaluated before the training and at 30 minutes, 6, and 24 hours of recovery. Lunges were performed faster with HRW compared with placebo ( p < 0.001). Hydrogen rich water reduced lactate at mid-way and immediately after the exercise (HRW: 5.3 ± 2.1 and 5.1 ± 2.2, placebo: 6.5 ± 1.8 and 6.3 ± 2.2 mmol·L -1 , p ≤ 0.008). Visual analog scale ratings were significantly lower with HRW (26 ± 11 vs. 41 ± 20 mm, p = 0.002) after 24 hours of recovery. In conclusion, an acute intermittent HRW hydration improved muscle function, reduced the lactate response, and alleviated delayed onset of muscle soreness.


Subject(s)
Resistance Training , Creatine Kinase, MM Form , Cross-Over Studies , Drinking , Humans , Hydrogen , Lactic Acid , Male , Muscle Strength/physiology , Muscle, Skeletal/physiology , Muscles , Myalgia/prevention & control , Water
9.
Article in English | MEDLINE | ID: mdl-33086469

ABSTRACT

This study focuses on the determination of the vagal threshold (Tva) during exercise with increasing intensity in normoxia and normobaric hypoxia. The experimental protocol was performed by 28 healthy men aged 20 to 30 years. It included three stages of exercise on a bicycle ergometer with a fraction of inspired oxygen (FiO2) 20.9% (normoxia), 17.3% (simulated altitude ~1500 m), and 15.3% (~2500 m) at intensity associated with 20% to 70% of the maximal heart rate reserve (MHRR) set in normoxia. Tva level in normoxia was determined at exercise intensity corresponding with (M ± SD) 45.0 ± 5.6% of MHRR. Power output at Tva (POth), representing threshold exercise intensity, decreased with increasing degree of hypoxia (normoxia: 114 ± 29 W; FiO2 = 17.3%: 110 ± 27 W; FiO2 = 15.3%: 96 ± 32 W). Significant changes in POth were observed with FiO2 = 15.3% compared to normoxia (p = 0.007) and FiO2 = 17.3% (p = 0.001). Consequentially, normoxic %MHRR adjusted for hypoxia with FiO2 = 15.3% was reduced to 39.9 ± 5.5%. Considering the convenient altitude for exercise in hypoxia, POth did not differ excessively between normoxic conditions and the simulated altitude of ~1500 m, while more substantial decline of POth occurred at the simulated altitude of ~2500 m compared to the other two conditions.


Subject(s)
Exercise , Oxygen Consumption , Adult , Altitude , Exercise/physiology , Exercise Test , Humans , Hypoxia , Male , Young Adult
10.
Int J Sports Physiol Perform ; 15(8): 1193-1196, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32045879

ABSTRACT

PURPOSE: Hydrogen-rich water (HRW) has been shown to have an antifatigue effect. This study assessed up-hill running performance, as well as physiological and perceptual responses after supplementation with 1680 mL HRW between 24 h and 40 min before running, in athletes of heterogeneous running ability. METHODS: Sixteen males (mean [SD] age 31.6 [8.6] y, VO2max 57.2 [8.9] mL·kg-1·min-1, body fat 13.4% [4.4%]) participated in this study. Using a randomized, double-blind, placebo-controlled crossover design, participants consumed either HRW or placebo prior to performing two 4.2-km up-hill races separated by a week. Race time (RT), average race heart rate, and immediately postrace rating of perceived exertion were assessed. RESULTS: After analysis of data for all runners, HRW effect was unclear (-10 to 7 s, 90% confidence interval) for RT, likely trivial for heart rate (-2 to 3 beats·min-1), and likely trivial for postrace rating of perceived exertion (-0.1 to 1.0). A possible negative correlation was found between RT differences and average RT (r = -.79 to -.15). HRW for the 4 slowest runners (RT = 1490 [91] s) likely improved the RT (-36 to -3 s), whereas for the 4 fastest runners (RT = 1069 [53] s) the performance effect of HRW was unclear (-10 to 26 s). CONCLUSIONS: HRW intake had an unclear antifatigue effect on performance in terms of mean group values. However, it appears that the magnitude of the antifatigue effect of HRW on performance depends on individual running ability.

11.
Nutr Metab Insights ; 12: 1178638819882739, 2019.
Article in English | MEDLINE | ID: mdl-31673228

ABSTRACT

The prevalence of cardiovascular disease (CVD) is rising worldwide, remaining the major cause of death in developed countries. Polyphenols have been shown to have cardioprotective properties; however, their impact on iron bioavailability and potential impact on other aspects of health is unclear. A systematic review was undertaken to evaluate the current status of the relationship between habitual polyphenol consumption, iron status, and circulating biomarkers of CVD. Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2009 guidelines, searches were performed across 5 electronic databases (PubMed, Cochrane Library, Scopus, Web of Science, and CINAHL) to identify randomized controlled trials which investigated the effects of polyphenol consumption on inflammatory markers, serum lipid profile, and iron absorption and bioavailability. In total, 1174 records were identified, with only 7 studies meeting the inclusion criteria. The selected studies involved 133 participants and used a variety of foods and supplements, including olive oil and cherries, rich in polyphenols including hydroxytyrosol, quercetin, and resveratrol, as well as catechin enriched drinks. The duration of the studies ranged from between 56 and 145 days, with total polyphenolic content of the food items and supplements ranging from 45 to 1015 mg (per 100 g). Polyphenols did not appear to interfere with iron status, and most studies reported improvements in inflammatory markers and lipid profile. While these results are promising, the limited number of studies and considerable heterogeneity across the interventions support the need for more extensive trials assessing the relationship between polyphenol intake, iron bioavailability, and CVD risk.

12.
Int J Sports Med ; 40(14): 879-885, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31574544

ABSTRACT

The potential anti-fatigue and performance benefits of hydrogen rich water (HRW) have resulted in increased research interest over the past 5 years. The aim of this study was to assess physiological and perceptual responses to an incremental exercise protocol after administration of 600 ml HRW within 30 min before exercise. This randomized, double blinded placebo-controlled cross over study included twelve healthy males aged 27.1±4.9 years. The exercise protocol consisted of a 10 min warm-up at 1.0 W.kg-1, followed by 8 min at 2.0, 3.0, and 4.0 W.kg-1, respectively. Cardio-respiratory variables, lactate and ratings of perceived exertion (RPE) were assessed in the last minute of each step. A significantly lower blood lactate was found with HRW (4.0±1.6 and 8.9±2.2 mmol.l-1) compared to Placebo (5.1±1.9 and 10.6±3.0 mmol.l-1) at 3.0, and 4.0 W.kg-1, respectively. Ventilatory equivalent for oxygen and RPE exhibited significantly lower values with HRW (32.3±7.2, and 17.8±1.2 points, respectively) compared to Placebo (35.0±8.4, and 18.5±0.8 points, respectively) at 4 W.kg-1. To conclude, acute pre-exercise supplementation with HRW reduced blood lactate at higher exercise intensities, improved exercise-induced perception of effort, and ventilatory efficiency.


Subject(s)
Drinking , Exercise/physiology , Hydrogen , Lactic Acid/blood , Perception/physiology , Physical Exertion/physiology , Respiration , Water/chemistry , Adult , Double-Blind Method , Exercise/psychology , Heart Rate/physiology , Humans , Male , Muscle Fatigue/physiology , Oxygen Consumption/physiology , Young Adult
13.
J Strength Cond Res ; 33(8): 2057-2065, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30985523

ABSTRACT

Stastny, P, Lehnert, M, De Ste Croix, M, Petr, M, Svoboda, Z, Maixnerova, E, Varekova, R, Botek, M, Petrek, M, Lenka, K, and Cieszczyk, P. Effect of COL5A1, GDF5, and PPARA genes on a movement screen and neuromuscular performance in adolescent team sport athletes. J Strength Cond Res 33(8): 2057-2065, 2019-The risk of injury increases with adolescents' chronological age and may be related to limited muscle function neuromuscular, genetic, and biomechanical factors. The purpose of this study was to determine whether COL5A1, PPARA, and GDF5 genes are associated with muscle functions and stretch-shortening cycle performance in adolescent athletes. One hundred forty-six youth players (14.4 ± 0.2 years) from various team sports (basketball n = 54, soccer n = 50, handball n = 32) underwent a manual test for muscle function, maturity estimation, functional bend test (FBT), passive straight leg raise (SLR) test, leg stiffness test, test of reactive strength index (RSI), and gene sampling for COL5A1, PPARA, and GDF5. The χ test did not show any differences in allele or genotype frequency between participants before and after peak height velocity. Multivariate analysis of variance showed that COL5A1 rs12722 CT heterozygotes had worse score in FBT (p < 0.001), worse score in SLR (p = 0.003), and lower maturity offset (p = 0.029, only in females) than TT homozygotes. Male GDF5 rs143383 GG homozygotes showed better score in SLR than AA and AG genotypes (p = 0.003), and AA and AG genotypes in both sex had greater RSI than GG homozygotes (p = 0.016). The PPARA rs4253778 CC homozygotes had greater RSI than GG and GC genotypes (p = 0.004). The CT genotype in COL5A1 rs12722 is possible predictor of functional movement disruption in the posterior hip muscle chain, causing shortening in FBT and SLR, which includes hamstrings function. CT genotype in COL5A1 rs12722 should be involved in programs targeting hamstring and posterior hip muscle chain.


Subject(s)
Athletes , Movement/physiology , Muscle, Skeletal/metabolism , Youth Sports/physiology , Adolescent , Biomechanical Phenomena , Body Weights and Measures , Collagen Type V/genetics , Cross-Sectional Studies , Female , Genotype , Growth Differentiation Factor 5/genetics , Humans , Male , Muscle Strength , PPAR alpha/genetics , Puberty/physiology , Sex Factors
14.
Eur J Sport Sci ; 19(8): 1130-1139, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30776255

ABSTRACT

Poor neuromuscular control and fatigue have been proposed as a risk factor for non-contact injuries especially around peak height velocity (PHV). This study explored the effects of competitive soccer match-play on neuromuscular performance and muscle damage in male youth soccer players. 24 youth players aged 13-16y were split into a PHV group (-0.5 to 0.5y) and post PHV group (1.0-2.5y) based on maturity off-set. Leg stiffness, reactive strength index (RSI), muscle activation, creatine kinase (CK), and muscle soreness were determined pre and post a competitive soccer match. Paired t-tests were used to explore differences pre and post competitive match play and independent sample t-tests for between groups differences for all outcome measures. There was no significant fatigue-related change in absolute and relative leg stiffness or muscle activation in both groups, except for the gastrocnemius in the post PHV group. RSI, CK and perceived muscle soreness were significantly different after soccer match-play in both groups with small to large effects observed (ES:0.41-2.82). There were no significant differences between the groups pre match-play except for absolute and relative leg stiffness (P < 0.001; ES = 1.16 and 0.63 respectively). No significant differences were observed in the fatigue related responses to competitive match play between groups except for perceived muscle soreness. The influence of competitive match-play on neuromuscular function and muscle damage is similar in male youth around the time of PHV and those post-PHV indicating that other factors must contribute to the heightened injury risk around PHV.


Subject(s)
Athletic Performance , Muscle Fatigue , Muscle, Skeletal/physiopathology , Myalgia/physiopathology , Soccer , Adolescent , Age Factors , Competitive Behavior , Creatine Kinase/blood , Humans , Male , Youth Sports
15.
Article in English | MEDLINE | ID: mdl-30532736

ABSTRACT

Introduction: The main aims of this study were to investigate autonomic nervous system (ANS) and arterial oxygen saturation (SpO2) responses to simulated altitude in males and females, and to determine the association between maximal oxygen uptake (VO2max) and these responses. Materials and Methods: Heart rate variability (HRV) and SpO2 were monitored in a resting supine position during Preliminary (6 min normoxia), Hypoxia (10 min, fraction of inspired oxygen (FiO2) of 9.6%, simulated altitude ~6,200 m) and Recovery (6 min normoxia) phases in 28 males (age 23.7 ± 1.7 years, normoxic VO2max 59.0 ± 7.8 ml.kg-1.min-1, body mass index (BMI) 24.2 ± 2.1 kg.m-2) and 30 females (age 23.8 ± 1.8 years, VO2max 45.1 ± 8.7 ml.kg-1.min-1, BMI 21.8 ± 3.0 kg.m-2). Spectral analysis of HRV quantified the ANS activity by means of low frequency (LF, 0.05-0.15 Hz) and high frequency (HF, 0.15-0.50 Hz) power, transformed by natural logarithm (Ln). Time domain analysis incorporated the square root of the mean of the squares of the successive differences (rMSSD). Results: There were no significant differences in SpO2 level during hypoxia between the males (71.9 ± 7.5%) and females (70.8 ± 7.1%). Vagally-related HRV variables (Ln HF and Ln rMSSD) exhibited no significant differences between sexes across each phase. However, while the sexes demonstrated similar Ln LF/HF values during the Preliminary phase, the males (0.5 ± 1.3) had a relatively higher (p = 0.001) sympathetic activity compared to females (-0.6 ± 1.4) during the Hypoxia phase. Oxygen desaturation during resting hypoxia was significantly correlated with VO2max in males (r = -0.45, p = 0.017) but not in females (r = 0.01, p = 0.952) and difference between regression lines were significant (p = 0.024). Conclusions: Despite similar oxygen desaturation levels, males exhibited a relatively higher sympathetic responses to hypoxia exposure compared with females. In addition, the SpO2 response to resting hypoxia exposure was related to maximal aerobic capacity in males but not females.

16.
PLoS One ; 13(10): e0205115, 2018.
Article in English | MEDLINE | ID: mdl-30296274

ABSTRACT

PURPOSE: To find the shortest, acceptable stabilization period before recording resting, supine ultra-short-term Ln RMSSD and heart rate (HR). METHOD: Thirty endurance-trained male athletes (age 24.1 ± 2.3 years, maximal oxygen consumption (VO2max) 64.1 ± 6.6 ml·kg-1·min-1) and 30 male students (age 23.3 ± 1.8 years, VO2max 52.8 ± 5.1 ml·kg-1·min-1) were recruited. Upon awaking at home, resting, supine RR intervals were measured continuously for 10 min using a Polar V800 HR monitor. Ultra-short-term Ln RMSSD and HR values were calculated from 1-min RR interval segments after stabilization periods from 0 to 4 min in 0.5 min increments and were compared with reference values calculated from 5-min segment after 5-min stabilization. Systematic bias and intraclass correlation coefficients (ICC) including 90% confidence intervals (CI) were calculated and magnitude based inference was conducted. RESULTS: The stabilization periods of up to 30 s for athletes and up to 60 s for students showed positive (possibly to most likely) biases for ultra-short-term Ln RMSSD compared with reference values. Stabilization periods of 60 s for athletes and 90 s for students showed trivial biases and ICCs were 0.84; 90% CI 0.72 to 0.91, and 0.88; 0.79 to 0.94, respectively. For HR, biases were trivial and ICCs were 0.93; 0.88 to 0.96, and 0.93; 0.88 to 0.96, respectively. CONCLUSION: The shortest stabilization period required to stabilize Ln RMSSD and HR was set at 60 s for endurance-trained athletes and 90 s for university students.


Subject(s)
Heart Rate Determination/methods , Athletes , Heart Rate/physiology , Humans , Male , Physical Endurance/physiology , Students , Time Factors , Universities , Vagus Nerve/physiology , Young Adult
17.
J Hum Kinet ; 62: 33-42, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29922375

ABSTRACT

The aim of this study was to examine the acute effects of soccer specific fatigue on muscular and neuromuscular function in male youth soccer players. Elite soccer players (n = 20; age 15.7 ± 0.5 y; body height 177.75 ± 6.61 cm; body mass 67.28 ± 8.29 kg) were measured before and after soccer specific exercise (SAFT90). The reactive strength index (RSI) was determined by a drop jump test, leg stiffness (LS) by a 20 sub-maximal two-legged hopping test, and a functional hamstring to quadriceps strength ratio from isokinetic concentric and eccentric strength of the dominant and non-dominant leg (measured at angular velocities of 1.05 rad · s-1 and 3.14 rad · s-1). Metabolic response to the SAFT90 was determined by blood lactate and perceived exertion was assessed by the Borg scale. After simulated match play, a significant decrease in absolute LS (t = 4.411; p < 0.001; ω2 = 0.48) and relative LS (t = 4.326; p < 0.001; ω2 = 0.49) was observed and the RSI increased significantly (t = 3.806; p = 0.001; ω2 = 0.40). A reduction in LS found after the SAFT90 indicates possible reduction in dynamic knee stabilization. However, if we consider the changes in other observed variables, the present study did not clearly confirm that fatigue induced by a soccer specific protocol increased the risk of ACL and hamstring injury. This may be attributed to the simulated rather than actual match play used in the present study.

18.
Optom Vis Sci ; 95(2): 136-142, 2018 02.
Article in English | MEDLINE | ID: mdl-29370023

ABSTRACT

SIGNIFICANCE: The main aim of this study was to determine the intraocular pressure (IOP) response to maximal incremental running test during 30 minutes of recovery. Exhaustive exercise induced a highly individually variable IOP response, which was related to its initial value and the initial heart rate. PURPOSE: The purpose of the study was to analyzed the IOP response to a maximal incremental running test in healthy women during a 30-minute recovery period. Secondarily, the study attempted to determine if the IOP was dependent on its baseline, maximal oxygen uptake, initial heart rate, and autonomic nervous system regulation. METHODS: Twenty-four healthy women between the ages of 19 and 30 years were recruited for the study. Initial IOP (baseline), heart rate, and autonomic nervous system regulation were measured after 30 minutes of rest. Each subject then underwent an incremental running test on a treadmill to reach the maximal physical activity and to determine physical fitness based on maximal oxygen uptake. Intraocular pressure and autonomic nervous system activity were measured immediately after completion of the physical activity during a 30-minute recovery period in the supine position. RESULTS: The IOP variability increased markedly after the exercise up to 1.7-fold of the resting state. The IOP before and after exercise did not differ significantly; however, the lower baseline revealed a significant increase in comparison with the higher baseline. The time course of the IOP changes was significantly influenced by the initial heart rate. All other effects, interactions, and correlations were insignificant. CONCLUSIONS: The IOP response after maximal exercise was highly dependent on the individual. The IOP seems to be slightly increasing with a significant dependence on its resting baseline and initial heart rate.


Subject(s)
Intraocular Pressure/physiology , Running/physiology , Adult , Exercise Test , Female , Heart Rate/physiology , Humans , Oxygen Consumption/physiology , Recovery of Function , Tonometry, Ocular , Young Adult
19.
Clin Physiol Funct Imaging ; 38(1): 56-62, 2018 Jan.
Article in English | MEDLINE | ID: mdl-27380961

ABSTRACT

Although the heart rate variability (HRV) response to hypoxia has been studied, little is known about the dynamics of HRV after hypoxia exposure. The purpose of this study was to assess the HRV and oxygen saturation (SpO2 ) responses to normobaric hypoxia (FiO2  = 9·6%) comparing 1 min segments to baseline (normoxia). Electrocardiogram and SpO2 were recorded during a 10-min hypoxia exposure in 29 healthy male subjects aged 26·0 ± 4·9 years. Baseline HRV values were obtained from a 5-min recording period prior to hypoxia. The hypoxia period was split into 10 non-overlapping 1-min segments and time domain HRV indexes (RMSSD and SDNN) were calculated for each segment. Differences (Δ) from baseline values were calculated and transformed using natural logarithm (Ln). This study revealed that the decrease in ΔSpO2 became significant (P<0·001) in the first minute of hypoxia, the decrease in ΔLn RMSSD became significant (P = 0·002) in the second minute, and the decrease in ΔLn SDNN became significant (P = 0·001) in the third minute. Between the second and fifth minute of hypoxia, ΔSpO2 correlated with ΔLn RMSSD (r = 0·57, P<0·001) and ΔLn SDNN (r = 0·44, P<0·001). Five min after the onset of hypoxia, ΔSpO2 was significantly (P = 0·002) decreased but changes in ΔLn RMSSD (P = 0·344) and ΔLn SDNN (P = 0·558) were not significant. In conclusion, the decrease in HRV was proportional to desaturation but only during the first 5 min of hypoxia.


Subject(s)
Altitude Sickness/blood , Altitude Sickness/physiopathology , Autonomic Nervous System/physiopathology , Heart Rate , Heart/innervation , Hypoxia/blood , Hypoxia/physiopathology , Oxygen/blood , Acclimatization , Adult , Altitude , Altitude Sickness/diagnosis , Biomarkers/blood , Electrocardiography , Humans , Hypoxia/diagnosis , Male , Time Factors , Young Adult
20.
Article in English | MEDLINE | ID: mdl-30666235

ABSTRACT

Purpose: The purpose of the study was to determine the intraocular pressure response to normobaric hypoxia and the consequent recovery under additional well-controlled ambient conditions. Second, the study attempted to determine if the intraocular pressure changes were dependent on its baseline, initial heart rate, sex and arterial oxygen saturation. Methods: Thirty-eight visually healthy volunteers (23 women and 15 men) of an average age 25.2 ± 3.8 years from 49 recruited participants met the inclusion criteria and performed the complete test. Initial intraocular pressure (baseline), heart rate, and arterial oxygen saturation were measured after 7 min of rest under normal ambient conditions at an altitude 250 m above sea level. Each subject then underwent a 10 min normobaric hypoxic exposure and a subsequent 7 min recovery under normoxic conditions. Within hypoxic period, subjects were challenged to breathe hypoxic gas mixture with fraction of inspired oxygen of 9.6% (~6.200 m above sea level). Intraocular pressure and arterial oxygen saturation were re-measured at 4 and 10 min during the hypoxia and at 7 min after hypoxia termination. Results: Intraocular pressure increased in 1.2 mmHg ± 1.9 mmHg and 0.9 mmHg ± 2.3 mmHg at 4 and 10 min during the hypoxic period and returned approximately to the baseline at 7 min of recovery. The influence of sex was not statistically significant. The arterial oxygen saturation decreased in 14.9 ± 4.2% at min 4 and 18.4 ± 5.8% at min 10 during hypoxia and returned to the resting value at 7 min of recovery. The decrease was slightly higher in the case of women if compared with men. The hypoxia induced changes in intraocular pressure were significantly correlated with the arterial oxygen saturation changes, whereas the relationship with intraocular pressure baseline and initial heart rate were insignificant. Conclusion: There was a significant increase in intraocular pressure as a response to short-term normobaric hypoxia, which returned to the baseline in 7 min after hypoxia. The increase was dependent on the induced oxygen desaturation.

SELECTION OF CITATIONS
SEARCH DETAIL
...