Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 101(12): 4362-70, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20153173

ABSTRACT

A co-digestion investigation was conducted using small-scale digesters in Costa Rica to optimize their ability to treat animal wastewater and produce renewable energy. Increases in methane production were quantified when swine manure was co-digested with used cooking grease in plug-flow digesters that operated at ambient temperate without mixing. The co-digestion experiments were conducted on 12 field-scale digesters (250 L each) using three replications of four treatment groups: the control (T0), which contained only swine manure and no waste oil, and T2.5, T5, and T10, which contained 2.5%, 5%, and 10% used cooking grease (by volume) combined with swine manure. The T2.5 treatment had the greatest methane (CH(4)) production (45 L/day), a 124% increase from the control, with a total biogas production of 67.3 L/day and 66.9% CH(4) in the produced biogas. Increasing the grease concentration beyond T2.5 produced biogas with a lower percentage of CH(4), and thus, did not result in any additional benefits. A batch study showed that methane production could be sustained for three months in digesters that co-digested swine manure and used cooking grease without daily inputs. The investigation proved that adding small amounts of grease to the influent is a simple way to double energy production without affecting other digester benefits.


Subject(s)
Biofuels/analysis , Hot Temperature , Manure/analysis , Methane/biosynthesis , Oils/chemistry , Waste Disposal, Fluid/economics , Waste Disposal, Fluid/instrumentation , Animals , Cooking , Hydrogen Sulfide/analysis , Seasons , Sewage , Swine , Time Factors
2.
Bioresour Technol ; 99(13): 5881-90, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18036816

ABSTRACT

Seven low-cost digesters in Costa Rica were studied to determine the potential of these systems to treat animal wastewater and produce renewable energy. The effluent water has a significantly lower oxygen demand (COD decreased from 2,968 mg/L to 472 mg/L) and higher dissolved nutrient concentration (NH(4)-N increased by 78.3% to 82.2mg/L) than the influent water, which increases the usefulness of the effluent as an organic fertilizer and decreases its organic loading on surface waters. On average, methane constituted 66% of the produced biogas, which is consistent with industrial digesters. Through principle component analysis, COD, turbidity, NH(4)-N, TKN, and pH were determined to be the most useful parameters to characterize wastewater. The results suggest that the systems have the ability to withstand fluctuations in the influent water quality. This study revealed that small-scale agricultural digesters can produce methane at concentrations useful for cooking, while improving the quality of the livestock wastewater.


Subject(s)
Bioreactors , Manure , Waste Disposal, Fluid , Water Purification/methods , Ammonia , Animals , Conservation of Natural Resources/economics , Costa Rica , Industrial Waste , Oxygen , Solutions , Waste Management/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...