Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Resist Infect Control ; 13(1): 64, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38886813

ABSTRACT

BACKGROUND: In the initial phase of the SARS-CoV-2 pandemic, masking has been widely accepted in healthcare institutions to mitigate the risk of healthcare-associated infection. Evidence, however, is still scant and the role of masks in preventing healthcare-associated SARS-CoV-2 acquisition remains unclear.We investigated the association of variation in institutional mask policies with healthcare-associated SARS-CoV-2 infections in acute care hospitals in Switzerland during the BA.4/5 2022 wave. METHODS: SARS-CoV-2 infections in hospitalized patients between June 1 and September 5, 2022, were obtained from the "Hospital-based surveillance of COVID-19 in Switzerland"-database and classified as healthcare- or community-associated based on time of disease onset. Institutions provided information regarding institutional masking policies for healthcare workers and other prevention policies. The percentage of healthcare-associated SARS-CoV-2 infections was calculated per institution and per type of mask policy. The association of healthcare-associated SARS-CoV-2 infections with mask policies was tested using a negative binominal mixed-effect model. RESULTS: We included 2'980 SARS-CoV-2 infections from 13 institutions, 444 (15%) were classified as healthcare-associated. Between June 20 and June 30, 2022, six (46%) institutions switched to a more stringent mask policy. The percentage of healthcare-associated infections subsequently declined in institutions with policy switch but not in the others. In particular, the switch from situative masking (standard precautions) to general masking of HCW in contact with patients was followed by a strong reduction of healthcare-associated infections (rate ratio 0.39, 95% CI 0.30-0.49). In contrast, when compared across hospitals, the percentage of health-care associated infections was not related to mask policies. CONCLUSIONS: Our findings suggest switching to a more stringent mask policy may be beneficial during increases of healthcare-associated SARS-CoV-2 infections at an institutional level.


Subject(s)
COVID-19 , Cross Infection , Masks , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Switzerland/epidemiology , Retrospective Studies , Cross Infection/prevention & control , Cross Infection/epidemiology , Female , Male , Middle Aged , Adult , Hospitals , Aged , Health Personnel , Infection Control/methods , Organizational Policy , Aged, 80 and over
2.
Swiss Med Wkly ; 154: 3732, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38749028

ABSTRACT

INTRODUCTION: With the emergence of newer SARS-CoV-2 variants and their substantial effects on the levels and duration of protection against infection, an understanding of these characteristics of the protection conferred by humoral and cellular immunity can aid in the proper development and implementation of vaccine and safety guidelines. METHODS: We conducted a rapid literature review and searched five electronic databases weekly from 1 November 2021 to 30 September 2022. Studies that assessed the humoral or cellular immunity conferred by infection, vaccination or a hybrid (combination of both) in adults and risk groups (immunocompromised and older populations) were identified. Studies were eligible when they reported data on immunological assays of COVID-19 (related to vaccination and/or infection) or the effectiveness of protection (related to the effectiveness of vaccination and/or infection). RESULTS: We screened 5103 studies and included 205 studies, of which 70 provided data on the duration of protection against SARS-CoV-2 infection. The duration of protection of adaptive immunity was greatly impacted by Omicron and its subvariants: levels of protection were low by 3-6 months from exposure to infection/vaccination. Although more durable, cellular immunity also showed signs of waning by 6 months. First and second mRNA vaccine booster doses increased the levels of protection against infection and severe disease from Omicron and its subvariants but continued to demonstrate a high degree of waning over time. CONCLUSION: All humoral immunities (infection-acquired, vaccine-acquired and hybrid) waned by 3-6 months. Cellular immunity was more durable but showed signs of waning by 6 months. Hybrid immunity had the highest magnitude of protection against SARS-CoV-2 infection. Boosting may be recommended as early as 3-4 months after the last dose, especially in risk groups.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunity, Cellular , SARS-CoV-2 , Humans , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Immunization, Secondary , Vaccination
3.
Swiss Med Wkly ; 153: 40095, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37769356

ABSTRACT

AIMS OF THE STUDY: Remdesivir has shown benefits against COVID-19. However, it remains unclear whether, to what extent, and among whom remdesivir can reduce COVID-19-related mortality. We explored whether the treatment response to remdesivir differed by patient characteristics. METHODS: We analysed data collected from a hospital surveillance study conducted in 21 referral hospitals in Switzerland between 2020 and 2022. We applied model-based recursive partitioning to group patients by the association between treatment levels and mortality. We included either treatment (levels: none, remdesivir within 7 days of symptom onset, remdesivir after 7 days, or another treatment), age and sex, or treatment only as regression variables. Candidate partitioning variables included a range of risk factors and comorbidities (and age and sex unless included in regression). We repeated the analyses using local centring to correct the results for the propensity to receive treatment. RESULTS: Overall (n = 21,790 patients), remdesivir within 7 days was associated with increased mortality (adjusted hazard ratios 1.28-1.54 versus no treatment). The CURB-65 score caused the most instability in the regression parameters of the model. When adjusted for age and sex, patients receiving remdesivir within 7 days of onset had higher mortality than those not treated in all identified eight patient groups. When age and sex were included as partitioning variables instead, the number of groups increased to 19-20; in five to six of those branches, mortality was lower among patients who received early remdesivir. Factors determining the groups where remdesivir was potentially beneficial included the presence of oncological comorbidities, male sex, and high age. CONCLUSIONS: Some subgroups of patients, such as individuals with oncological comorbidities or elderly males, may benefit from remdesivir.


Subject(s)
COVID-19 , Aged , Male , Humans , Switzerland/epidemiology , COVID-19 Drug Treatment , Hospitals , Antiviral Agents/therapeutic use
4.
BMC Public Health ; 22(1): 1073, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35641949

ABSTRACT

Emerging infectious diseases are a growing threat in sub-Saharan African countries, but the human and technical capacity to quickly respond to outbreaks remains limited. Here, we describe the experience and lessons learned from a joint project with the WHO Regional Office for Africa (WHO AFRO) to support the sub-Saharan African COVID-19 response.In June 2020, WHO AFRO contracted a number of consultants to reinforce the COVID-19 response in member states by providing actionable epidemiological analysis. Given the urgency of the situation and the magnitude of work required, we recruited a worldwide network of field experts, academics and students in the areas of public health, data science and social science to support the effort. Most analyses were performed on a merged line list of COVID-19 cases using a reverse engineering model (line listing built using data extracted from national situation reports shared by countries with the Regional Office for Africa as per the IHR (2005) obligations). The data analysis platform The Renku Project ( https://renkulab.io ) provided secure data storage and permitted collaborative coding.Over a period of 6 months, 63 contributors from 32 nations (including 17 African countries) participated in the project. A total of 45 in-depth country-specific epidemiological reports and data quality reports were prepared for 28 countries. Spatial transmission and mortality risk indices were developed for 23 countries. Text and video-based training modules were developed to integrate and mentor new members. The team also began to develop EpiGraph Hub, a web application that automates the generation of reports similar to those we created, and includes more advanced data analyses features (e.g. mathematical models, geospatial analyses) to deliver real-time, actionable results to decision-makers.Within a short period, we implemented a global collaborative approach to health data management and analyses to advance national responses to health emergencies and outbreaks. The interdisciplinary team, the hands-on training and mentoring, and the participation of local researchers were key to the success of this initiative.


Subject(s)
COVID-19 , Africa South of the Sahara/epidemiology , COVID-19/epidemiology , Disease Outbreaks/prevention & control , Humans , Public Health , Workforce
5.
BMJ Glob Health ; 7(4)2022 04.
Article in English | MEDLINE | ID: mdl-35418411

ABSTRACT

During the first wave of the COVID-19 pandemic, sub-Saharan African countries experienced comparatively lower rates of SARS-CoV-2 infections and related deaths than in other parts of the world, the reasons for which remain unclear. Yet, there was also considerable variation between countries. Here, we explored potential drivers of this variation among 46 of the 47 WHO African region Member States in a cross-sectional study. We described five indicators of early COVID-19 spread and severity for each country as of 29 November 2020: delay in detection of the first case, length of the early epidemic growth period, cumulative and peak attack rates and crude case fatality ratio (CFR). We tested the influence of 13 pre-pandemic and pandemic response predictor variables on the country-level variation in the spread and severity indicators using multivariate statistics and regression analysis. We found that wealthier African countries, with larger tourism industries and older populations, had higher peak (p<0.001) and cumulative (p<0.001) attack rates, and lower CFRs (p=0.021). More urbanised countries also had higher attack rates (p<0.001 for both indicators). Countries applying more stringent early control policies experienced greater delay in detection of the first case (p<0.001), but the initial propagation of the virus was slower in relatively wealthy, touristic African countries (p=0.023). Careful and early implementation of strict government policies were likely pivotal to delaying the initial phase of the pandemic, but did not have much impact on other indicators of spread and severity. An over-reliance on disruptive containment measures in more resource-limited contexts is neither effective nor sustainable. We thus urge decision-makers to prioritise the reduction of resource-based health disparities, and surveillance and response capacities in particular, to ensure global resilience against future threats to public health and economic stability.


Subject(s)
COVID-19 , Pandemics , Cross-Sectional Studies , Humans , SARS-CoV-2 , World Health Organization
6.
BMJ Glob Health ; 7(3)2022 03.
Article in English | MEDLINE | ID: mdl-35277427

ABSTRACT

The geographic and economic characteristics unique to island nations create a different set of conditions for, and responses to, the spread of a pandemic compared with those of mainland countries. Here, we aimed to describe the initial period of the COVID-19 pandemic, along with the potential conditions and responses affecting variation in the burden of infections and severe disease burden, across the six island nations of the WHO's Africa region: Cabo Verde, Comoros, Madagascar, Mauritius, São Tomé e Príncipe and Seychelles. We analysed the publicly available COVID-19 data on confirmed cases and deaths from the beginning of the pandemic through 29 November 2020. To understand variation in the course of the pandemic in these nations, we explored differences in their economic statuses, healthcare expenditures and facilities, age and sex distributions, leading health risk factors, densities of the overall and urban populations and the main industries in these countries. We also reviewed the non-pharmaceutical response measures implemented nationally. We found that the burden of SARS-CoV-2 infection was reduced by strict early limitations on movement and biased towards nations where detection capacity was higher, while the burden of severe COVID-19 was skewed towards countries that invested less in healthcare and those that had older populations and greater prevalence of key underlying health risk factors. These findings highlight the need for Africa's island nations to invest more in healthcare and in local testing capacity to reduce the need for reliance on border closures that have dire consequences for their economies.


Subject(s)
COVID-19 , Influenza, Human , Delivery of Health Care , Humans , Influenza, Human/epidemiology , Pandemics , SARS-CoV-2
7.
BMJ Glob Health ; 6(11)2021 11.
Article in English | MEDLINE | ID: mdl-34815243

ABSTRACT

INTRODUCTION: Since sex-based biological and gender factors influence COVID-19 mortality, we wanted to investigate the difference in mortality rates between women and men in sub-Saharan Africa (SSA). METHOD: We included 69 580 cases of COVID-19, stratified by sex (men: n=43 071; women: n=26 509) and age (0-39 years: n=41 682; 40-59 years: n=20 757; 60+ years: n=7141), from 20 member nations of the WHO African region until 1 September 2020. We computed the SSA-specific and country-specific case fatality rates (CFRs) and sex-specific CFR differences across various age groups, using a Bayesian approach. RESULTS: A total of 1656 deaths (2.4% of total cases reported) were reported, with men accounting for 70.5% of total deaths. In SSA, women had a lower CFR than men (mean [Formula: see text] = -0.9%; 95% credible intervals (CIs) -1.1% to -0.6%). The mean CFR estimates increased with age, with the sex-specific CFR differences being significant among those aged 40 years or more (40-59 age group: mean [Formula: see text] = -0.7%; 95% CI -1.1% to -0.2%; 60+ years age group: mean [Formula: see text] = -3.9%; 95% CI -5.3% to -2.4%). At the country level, 7 of the 20 SSA countries reported significantly lower CFRs among women than men overall. Moreover, corresponding to the age-specific datasets, significantly lower CFRs in women than men were observed in the 60+ years age group in seven countries and 40-59 years age group in one country. CONCLUSIONS: Sex and age are important predictors of COVID-19 mortality globally. Countries should prioritise the collection and use of sex-disaggregated data so as to design public health interventions and ensure that policies promote a gender-sensitive public health response.


Subject(s)
COVID-19 , Adolescent , Adult , Africa South of the Sahara/epidemiology , Bayes Theorem , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , SARS-CoV-2 , Young Adult
8.
Epidemiol Infect ; 149: e260, 2021 05 26.
Article in English | MEDLINE | ID: mdl-34036928

ABSTRACT

The rapid transmissibility of the severe acute respiratory syndrome-coronavirus-2 causing coronavirus disease-2019, requires timely dissemination of information and public health responses, with all 47 countries of the WHO African Region simultaneously facing significant risk, in contrast to the usual highly localised infectious disease outbreaks. This demanded a different approach to information management and an adaptive information strategy was implemented, focusing on data collection and management, reporting and analysis at the national and regional levels. This approach used frugal innovation, building on tools and technologies that are commonly used, and well understood; as well as developing simple, practical, highly functional and agile solutions that could be rapidly and remotely implemented, and flexible enough to be recalibrated and adapted as required. While the approach was successful in its aim of allowing the WHO Regional Office for Africa (WHO AFRO) to gather surveillance and epidemiological data, several challenges were encountered that affected timeliness and quality of data captured and reported by the member states, showing that strengthening data systems and digital capacity, and encouraging openness and data sharing are an important component of health system strengthening.


Subject(s)
COVID-19/epidemiology , Information Management , World Health Organization/organization & administration , Africa/epidemiology , Delivery of Health Care , Humans , SARS-CoV-2
9.
PLoS One ; 15(3): e0229989, 2020.
Article in English | MEDLINE | ID: mdl-32134964

ABSTRACT

BACKGROUND: Snakebite envenoming is a major global health problem that kills or disables half a million people in the world's poorest countries. Biting snake identification is key to understanding snakebite eco-epidemiology and optimizing its clinical management. The role of snakebite victims and healthcare providers in biting snake identification has not been studied globally. OBJECTIVE: This scoping review aims to identify and characterize the practices in biting snake identification across the globe. METHODS: Epidemiological studies of snakebite in humans that provide information on biting snake identification were systematically searched in Web of Science and Pubmed from inception to 2nd February 2019. This search was further extended by snowball search, hand searching literature reviews, and using Google Scholar. Two independent reviewers screened publications and charted the data. RESULTS: We analysed 150 publications reporting 33,827 snakebite cases across 35 countries. On average 70% of victims/bystanders spotted the snake responsible for the bite and 38% captured/killed it and brought it to the healthcare facility. This practice occurred in 30 countries with both fast-moving, active-foraging as well as more secretive snake species. Methods for identifying biting snakes included snake body examination, victim/bystander biting snake description, interpretation of clinical features, and laboratory tests. In nine publications, a picture of the biting snake was taken and examined by snake experts. Snakes were identified at the species/genus level in only 18,065/33,827 (53%) snakebite cases. 106 misidentifications led to inadequate victim management. The 8,885 biting snakes captured and identified were from 149 species including 71 (48%) non-venomous species. CONCLUSION: Snakebite victims and healthcare providers can play a central role in biting snake identification and novel approaches (e.g. photographing the snake, crowdsourcing) could help increase biting snake taxonomy collection to better understand snake ecology and snakebite epidemiology and ultimately improve snakebite management.


Subject(s)
Community Health Services , Health Personnel , Snake Bites/epidemiology , Snakes , Animals , Biodiversity , Humans , Internationality
SELECTION OF CITATIONS
SEARCH DETAIL
...