Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 812: 152567, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34952067

ABSTRACT

The effluents from wastewater treatment plants (WWTPs) can be an important contamination source for receiving waters. In this work, a comprehensive study on the impact of a WWTP from Madrid on the aquatic environment has been performed, including a wide number of pharmaceuticals and pesticides, among them those included in the European Watch List. 24-h composite samples of influent (IWW) and effluent wastewater after secondary (EWW2) and after secondary + tertiary treatment (EWW3) were monitored along two campaigns. Average weekly concentrations in IWW and EWW2 and EWW3 allowed estimating the removal efficiency of the WWTP for pharmaceutical active substances (PhACs). In addition, the impact of EWW3 on the water quality of the Manzanares River was assessed, in terms of PhAC and pesticide concentrations, through analysis of the river water collected upstream and downstream of the discharge point. After a preliminary risk assessment, a detailed evaluation of the impact on the aquatic environment, including a toxicological study and screening of pharmaceutical metabolites, was made for the seven most relevant PhACs: sulfamethoxazole, azithromycin and clarithromycin (antibiotics), metoprolol (antihypertensive), diclofenac (anti-inflammatory/analgesic), irbesartan (antihypertensive), and the antidepressant venlafaxine. Among selected PhACs, irbesartan, clarithromycin and venlafaxine presented moderate or high risk in the river water downstream of the discharge. Albeit no acute toxicity was detected, more detailed studies should be carried out for these substances, including additional toxicological studies, to set up potential sublethal and chronic effects on aquatic organisms.


Subject(s)
Pharmaceutical Preparations , Water Pollutants, Chemical , Environmental Monitoring , Rivers , Spain , Waste Disposal, Fluid , Wastewater/analysis , Water Pollutants, Chemical/analysis
2.
Environ Int ; 155: 106674, 2021 10.
Article in English | MEDLINE | ID: mdl-34174591

ABSTRACT

This is the first study dealing with removal of the pharmaceutical substances in municipal wastewater treatment plants (MWWTPs) from Peru and the impact of these compounds in surface waters receiving treated wastewater. To this aim, samples from MWWTP of Lima (Peruvian Coast), MWWTP of Cusco, Puno and Juliaca (Peruvian Highlands), as well surface water (confluence of Torococha and Coata rivers in Juliaca) were analyzed. A total of 38 target pharmaceuticals were included in this study and were determined by Liquid Chromatography coupled to tandem Mass Spectrometry (LC-MS/MS). Around 60% and 75% of the target pharmaceuticals could be quantified in surface water and MWWTPs, respectively. Acetaminophen was the drug found at the highest concentration, and it was present in all the treated wastewater samples reaching average values above 100 µg/L in the department of Puno. The gabapentin anti-epileptic drug (up to 11.85 µg/L in MWWTP Lima) and the antibiotics clarithromycin, trimethoprim, ciprofloxacin, sulfamethoxazole and azithromycin (1.86 to 4.47 µg/L in MWWTP Lima) were also found at moderate concentrations in the treated wastewater. In surface water, the highest concentration corresponded also to acetaminophen (28.70 µg/L) followed by sulfamethoxazole (4.36 µg/L). As regards the pharmaceuticals removal, data of this work showed that the MWWTP Cusco (aerobic biologic process by synthetic trickling filters as secondary treatment) was more efficient than the MWWTP Lima (a preliminary treatment that combines grilles, sand trap, degreaser-aerated and sieved of 1.0 mm). However, many pharmaceuticals (around 50% of the compounds investigated) presented concentrations in treated wastewater similar or even higher than in influent wastewater. The environmental ecological risk of pharmaceuticals was assessed based on calculated Risk Quotient (RQ) in the treated wastewater and surface water from the concentration data found in the samples. According to our data, three antibiotics (clarithromycin, ciprofloxacin, clindamycin) and the analgesic acetaminophen posed high environmental risk (RQ ≥ 1) on the aquatic environment. In the river, all antibiotics (except norfloxacin) as well as the analgesic-anti-inflammatory compounds acetaminophen, diclofenac posed a high environmental risk (RQ ≥ 1). Based on data reported in this work for the first time in water samples from Peru, it can be deduced that the treatment processes applied in important cities from Peru are not enough efficient to remove pharmaceuticals in wastewater. As a consequence, severe environmental risks associated to the presence of pharmaceuticals in treated wastewater and surface water are expected; so complementary treatment processes should be implemented in the MWWTPs for a more efficient elimination of these compounds.


Subject(s)
Pharmaceutical Preparations , Water Pollutants, Chemical , Water Purification , Chromatography, Liquid , Environmental Monitoring , Peru , Risk Assessment , Rivers , Tandem Mass Spectrometry , Wastewater/analysis , Water Pollutants, Chemical/analysis
3.
Chemosphere ; 222: 564-583, 2019 May.
Article in English | MEDLINE | ID: mdl-30726704

ABSTRACT

Exposure science, in its broadest sense, studies the interactions between stressors (chemical, biological, and physical agents) and receptors (e.g. humans and other living organisms, and non-living items like buildings), together with the associated pathways and processes potentially leading to negative effects on human health and the environment. The aquatic environment may contain thousands of compounds, many of them still unknown, that can pose a risk to ecosystems and human health. Due to the unquestionable importance of the aquatic environment, one of the main challenges in the field of exposure science is the comprehensive characterization and evaluation of complex environmental mixtures beyond the classical/priority contaminants to new emerging contaminants. The role of advanced analytical chemistry to identify and quantify potential chemical risks, that might cause adverse effects to the aquatic environment, is essential. In this paper, we present the strategies and tools that analytical chemistry has nowadays, focused on chromatography hyphenated to (high-resolution) mass spectrometry because of its relevance in this field. Key issues, such as the application of effect direct analysis to reduce the complexity of the sample, the investigation of the huge number of transformation/degradation products that may be present in the aquatic environment, the analysis of urban wastewater as a source of valuable information on our lifestyle and substances we consumed and/or are exposed to, or the monitoring of drinking water, are discussed in this article. The trends and perspectives for the next few years are also highlighted, when it is expected that new developments and tools will allow a better knowledge of chemical composition in the aquatic environment. This will help regulatory authorities to protect water bodies and to advance towards improved regulations that enable practical and efficient abatements for environmental and public health protection.


Subject(s)
Chemistry Techniques, Analytical , Ecosystem , Environmental Exposure/analysis , Environmental Monitoring , Humans
4.
J Hazard Mater ; 363: 447-456, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30342348

ABSTRACT

The potential presence of introduced antibiotics in the aquatic environment is a hot topic of concern, particularly in the Antarctic, a highly vulnerable area protected under the Madrid protocol. The increasing presence of human population, especially during summer, might led to the appearance of pharmaceuticals in wastewater. The previous discovery of Escherichia coli strains resistant to antibiotics in sea water and wastewater collected in King George Island motivated our investigation on antibiotics occurrence in these samples. The application of a multi-residue LCMS/MS method for 20 antibiotics, revealed the presence of 8 compounds in treated wastewater, mainly the quinolones ciprofloxacin and norfloxacin (92% and 54% of the samples analyzed, average concentrations 0.89 µg/L and 0.75 µg/L, respectively) and the macrolides azithromycin and clarithromycin (15% positive samples, and average concentrations near 0.4 µg/L), and erythromycin (38% positive samples, average concentration 0.003 µg/L). Metronidazole and clindamycin were found in one sample, at 0.17 and 0.1 µg/L, respectively; and trimethoprim in two samples, at 0.001 µg/L. Analysis of sea water collected near the outfall of the wastewater discharges also showed the sporadic presence of 3 antibiotics (ciprofloxacin, clindamycin, trimethoprim) at low ng/L level, illustrating the impact of pharmaceuticals consumption and the poor removal of these compounds in conventional WWTPs. The most widespread antibiotic in sea water was ciprofloxacin, which was found in 15 out of 34 sea water samples analyzed, at concentrations ranging from 4 to 218 ng/L. Bacteria resistance was observed for some antibiotics identified in the samples (e.g. trimetropim and nalidixic acid -a first generation quinolone). However, resistance to some groups of antibiotics could not be correlated to their presence in the water samples due to analytical limitations (penicillins, tetraciclines). On the contrary, for some groups of antibiotics detected in samples (macrolides), the antibacterial activity against E. Coli was not investigated because these antibiotics do not include this bacterial species in their spectrum of activity. Our preliminary data demonstrate that antibiotics occurrence in the Antarctic aquatic environment is an issue that needs to be properly addressed. Periodical monitoring of water samples and the implementation of additional treatments in the WWTPs are recommended as a first step to prevent potential problems related to the presence of antibiotics and other emerging contaminants in the near future in Antarctica.


Subject(s)
Anti-Bacterial Agents/analysis , Drug Resistance, Bacterial , Seawater/chemistry , Water Pollutants, Chemical/analysis , Antarctic Regions , Seawater/microbiology
5.
Sci Total Environ ; 642: 842-853, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30045524

ABSTRACT

In this work, the presence of 20 pharmaceuticals in wastewater from Colombia is investigated. Several widely consumed compounds have been detected in wastewater samples from different origins and geographical areas in Colombia. The studied pharmaceuticals included antibiotics, analgesics and anti-inflammatories, cholesterol lowering statin drugs, lipid regulators, and anti-depressants. The investigated samples were urban wastewater collected during one whole week before (influent) and after treatment (effluent) in the wastewater treatment plants (WWTPs) of Bogotá and Medellin. Raw wastewater from the Hospital of Tumaco and from the city of Florencia were also collected. Analyses performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed that most of the target analytes were present in all the wastewater samples. The highest concentrations (up to 50 µg/L) corresponded to acetaminophen, but several antibiotics, such as azithromycin, ciprofloxacin and norfloxacin, and antihypertensive drugs, such as losartan and valsartan, were commonly present in influent wastewater (IWW) at levels above 1 µg/L. Moreover, the treatment applied in WWTPs seemed to not efficiently remove the compounds under study, because most pharmaceuticals were also present in effluent wastewater (EWW) at concentrations close to those of the IWW. Special emphasis was made in this work on the quality of data reported, performing a detailed study of quality control (QC) samples. The analytical approach used -direct injection of 5-fold diluted samples without any additional treatment - is simpler and faster than the commonly applied solid phase extraction (SPE). The use of 12 isotope-labelled internal standards ensured the satisfactory correction of matrix effects for the corresponding analytes. For the remaining 8 compounds, no drastic matrix effects were observed, and only four compounds (cloxacillin, doxycycline, losartan, tetracycline) presented QC recoveries near or slightly below 60%, revealing ionization suppression, particularly in the IWW. Data on the occurrence of pharmaceuticals reported in this paper are the basis for current studies that aim to develop efficient systems for the degradation/removal of these compounds from the aquatic environment.


Subject(s)
Pharmaceutical Preparations/analysis , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Chromatography, High Pressure Liquid , Cities , Colombia , Environmental Monitoring , Solid Phase Extraction , Tandem Mass Spectrometry
6.
J Chromatogr A ; 1313: 157-65, 2013 Oct 25.
Article in English | MEDLINE | ID: mdl-23891211

ABSTRACT

The residue determination of the widely used herbicide glyphosate (GLY) is highly problematic due to its amphoteric character, low mass and lack of chemical groups that might facilitate its detection. Most methods developed up to now have employed pre-column or post-column derivatization to form fluorescent derivatives and/or to reduce the polar character of the analyte facilitating its chromatographic retention. The aim of this work is to evaluate the feasibility of performing the direct LC-MS/MS determination of GLY residues in vegetables. After testing several Hydrophilic Interaction Liquid Chromatography (HILIC) columns, Obelisc N was selected due to its better chromatographic retention. LC-MS/MS determination has been performed in negative ionization mode, monitoring up to four transitions to give high reliability to the identification/confirmation process. This approach has been evaluated for the determination of GLY residues in rice, maize and soybean samples, and the method validated at different concentrations in compliance with the maximum residue limits established in the current legislation. After sample extraction with water, a combination of extract dilution, partition with dichloromethane, and solid phase extraction (SPE) using Oasis HLB cartridges (depending on the sample matrix under analysis) was applied. Quantification was made by using isotope-labeled GLY as internal standard and calibration in solvent. The methodology developed allows the rapid determination of GLY residues avoiding the derivatization step typically applied for this herbicide. The most critical issue is the robustness of the Obelisc N column, which was found to suffer rapid degradation with time. Extreme care and continuous testing of retention times and peak shapes is required for a reliable determination.


Subject(s)
Glycine max/chemistry , Glycine/analogs & derivatives , Oryza/chemistry , Zea mays/chemistry , Chromatography, Liquid/instrumentation , Chromatography, Liquid/methods , Glycine/analysis , Glycine/chemistry , Glycine/isolation & purification , Reproducibility of Results , Sensitivity and Specificity , Solid Phase Extraction , Tandem Mass Spectrometry/methods , Glyphosate
7.
J Chromatogr A ; 1292: 132-41, 2013 May 31.
Article in English | MEDLINE | ID: mdl-23332301

ABSTRACT

The determination of glyphosate (GLY) in soils is of great interest due to the widespread use of this herbicide and the need of assessing its impact on the soil/water environment. However, its residue determination is very problematic especially in soils with high organic matter content, where strong interferences are normally observed, and because of the particular physico-chemical characteristics of this polar/ionic herbicide. In the present work, we have improved previous LC-MS/MS analytical methodology reported for GLY and its main metabolite AMPA in order to be applied to "difficult" soils, like those commonly found in South-America, where this herbicide is extensively used in large areas devoted to soya or maize, among other crops. The method is based on derivatization with FMOC followed by LC-MS/MS analysis, using triple quadrupole. After extraction with potassium hydroxide, a combination of extract dilution, adjustment to appropriate pH, and solid phase extraction (SPE) clean-up was applied to minimize the strong interferences observed. Despite the clean-up performed, the use of isotope labelled glyphosate as internal standard (ILIS) was necessary for the correction of matrix effects and to compensate for any error occurring during sample processing. The analytical methodology was satisfactorily validated in four soils from Colombia and Argentina fortified at 0.5 and 5mg/kg. In contrast to most LC-MS/MS methods, where the acquisition of two transitions is recommended, monitoring all available transitions was required for confirmation of positive samples, as some of them were interfered by unknown soil components. This was observed not only for GLY and AMPA but also for the ILIS. Analysis by QTOF MS was useful to confirm the presence of interferent compounds that shared the same nominal mass of analytes as well as some of their main product ions. Therefore, the selection of specific transitions was crucial to avoid interferences. The methodology developed was applied to the analysis of 26 soils from different areas of Colombia and Argentina, and the method robustness was demonstrated by analysis of quality control samples along 4 months.


Subject(s)
Chromatography, Liquid/methods , Glycine/analogs & derivatives , Herbicides/analysis , Pesticide Residues/analysis , Soil Pollutants/analysis , Soil/analysis , Glycine/analysis , Sensitivity and Specificity , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods , Glyphosate
8.
Sci Total Environ ; 439: 249-59, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-23085466

ABSTRACT

The irrigate district of Usosaldaña, an important agricultural area in Colombia mainly devoted to rice crop production, is subjected to an intensive use of pesticides. Monitoring these compounds is necessary to know the impact of phytosanitary products in the different environmental compartments. In this work, surface water and soil samples from different sites of this area have been analyzed by applying an analytical methodology for large screening based on the use of time-of-flight mass spectrometry (TOF MS) hyphenated to liquid chromatography (LC) and gas chromatography (GC). Several pesticides were detected and unequivocally identified, such as the herbicides atrazine, diuron or clomazone. Some of their main metabolites and/or transformation products (TPs) like deethylatrazine (DEA), deisopropylatrazine (DIA) and 3,4-dichloroaniline were also identified in the samples. Among fungicides, carbendazim, azoxystrobin, propiconazole and epoxiconazole were the most frequently detected. Insecticides such as thiacloprid, or p,p'-DDT metabolites (p,p'-DDD and p,p'-DDE) were also found. Thanks to the accurate-mass full-spectrum acquisition in TOF MS it was feasible to widen the number of compounds to be investigated to other families of contaminants. This allowed the detection of emerging contaminants, such as the antioxidant 3,5-di-tertbutyl-4-hydroxy-toluene (BHT), its metabolite 3,5-di-tert-butyl-4-hydroxy-benzaldehyde (BHT-CHO), or the solar filter benzophenone, among others.


Subject(s)
Environmental Monitoring , Fresh Water/chemistry , Organic Chemicals/analysis , Oryza/growth & development , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Colombia , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Fungicides, Industrial/analysis , Gas Chromatography-Mass Spectrometry/instrumentation , Gas Chromatography-Mass Spectrometry/methods , Herbicides/analysis , Pesticides/analysis
9.
Anal Bioanal Chem ; 402(7): 2287-300, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21983979

ABSTRACT

Monitoring pesticide residues in tropical fruits is of great interest for many countries, e.g., from South America, that base an important part of their economy on the exportation of these products. In this work, a LC-MS/MS multi-residue method using a triple quadrupole analyzer has been developed for around 30 pesticides in seven Colombian tropical fruits of high commercial value for domestic and international markets (uchuva, tamarillo, granadilla, gulupa, maracuya, papaya, and pithaya). After sample extraction with acetonitrile, an aliquot of the extract was diluted with water and directly injected into the HPLC-MS/MS system (electrospray interface) without any cleanup step. The formation of sodium adducts-of poor fragmentation-was minimized using 0.1% formic acid in the mobile phase, which favored the formation of the protonated molecule. However, the addition of ammonium acetate made the formation of the ammonium adducts in some particular cases possible, avoiding the presence of the sodium adducts. The highest sensitivity was observed in positive electrospray ionization for the wide majority of pesticides, with a few exceptions for acidic compounds that gave better response in the negative mode (e.g., 2,4-D, fluazinan). Thus, simultaneous acquisition on the positive/negative mode was applied. Two MS/MS transitions were acquired for each compound to ensure a reliable quantification and identification of the compounds detected in samples, although for malathion a third transition was acquired due to the presence of interfering isobaric compounds in the sample extracts. A detailed study of matrix effects was made by a comparison of standards in solvent and in matrix. Both ionization suppression and ionization enhancement were observed depending on the analyte/matrix combination tested. Correction of matrix effects was made by the application of calibration in matrix. Three matrices were selected (uchuva, maracuya, gulupa) to perform matrix calibration in the analysis of all seven fruit varieties studied. The method was validated by recovery experiments in samples spiked at two levels (0.05 and 0.5 mg/kg). The data were satisfactory for the wide majority of analyte/matrix combinations, with most recoveries between 70% and 110% and the RSD below 15%. Several samples collected from the market were finally analyzed. Positive findings were confirmed by evaluating the experimental Q/q ratios and retention times, and comparing them with those of reference standards.


Subject(s)
Chromatography, High Pressure Liquid/methods , Fruit/chemistry , Pesticide Residues/analysis , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL