Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Clin Med Phys ; 15(4): 382­391, 2014 07 08.
Article in English | MEDLINE | ID: mdl-25207418

ABSTRACT

During radiation therapy of the female breast, the actual target volume compared to the planning target volume may change due to swelling or shrinking of the tissue. Under- or overdosage is to be expected, especially when performing IMRT or tomotherapy techniques. The objective of this study is to develop a model-based quantification of these dose effects, with a particular focus on the changes in the surface dose. A cylindrical phantom was used as an artificial surrogate of the human torso. By adding and removing Superflab layers of various thicknesses, both radial breast swelling and shrinking could be simulated. The effects on dose distribution were evaluated using film dosimetry. The results were compared to dose calculations. To estimate the true surface doses, we subtracted the influence of the film material on air measurements. During a swelling of 5, 10, and 15 mm, the planning target volume was consistently underdosed by 2%, 5%, and 7% of the prescribed dose, respectively. Swelling led to reduced dose values of up to 72%, 55%, and 50% at the outer edge of the actual target volume. The measured surface dose decreased successively from 31% to 23%. During shrinking, the dose in the planning target volume increased successively from 100% to 106%. The measured surface doses increased from 29% to 36%. The calculated dose values agreed with the measured values within error limits. During radiotherapy of the female breast, new planning appears to be essential for radial tissue swelling of 5 mm or more because of severe underdosing. Shrinking leads to moderate overdosing and an increased surface dose. In addition, caution is advised when removing bolus material with respect to the planned situation.


Subject(s)
Breast/pathology , Breast/radiation effects , Edema/radiotherapy , Phantoms, Imaging , Radiotherapy, Intensity-Modulated/methods , Female , Humans , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...