Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37340554

ABSTRACT

Fusarium wilt of banana (Musa spp.), caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc), is a major constraint to banana production worldwide (Dita et al., 2018). A strain of Foc that affects Cavendish (AAA) bananas in the tropics, called Foc tropical race 4 (TR4; VCG 01213), is of particular concern. Foc TR4 was first detected in Malaysia and Indonesia around 1990 but was restricted to Southeast Asia and northern Australia until 2012. The fungus has since been reported from Africa, the Indian subcontinent, and the Middle East (Viljoen et al., 2020). Foc TR4 was detected in Colombia in 2019 and in Perú in 2021 (Reyes-Herrera et al., 2020). The incursions into Latin America and the Caribbean (LAC) triggered global concerns, as 75% of international export bananas are produced in the region. Banana production in Venezuela, however, is primarily intended for domestic consumption (Aular and Casares, 2011). In 2021 the country produced 533,190 metric tons of banana on an area of 35,896 ha, with an approximate yield of 14,853 kg/ha (FAOSTAT, 2023). In July 2022, severe leaf-yellowing, and wilting, along with internal vascular discoloration of the pseudostem, were noted in Cavendish banana plants cultivar 'Valery' in the states of Aragua (10°11'8″N; 67°34'51″W), Carabobo (10º14'24″N; 67º48'51″W), and Cojedes (9°37'44″N; 68°55'4″W). Necrotic strands from the pseudostems of diseased plants were collected for identification of the causal agent using DNA-based techniques, vegetative compatibility group (VCG) analysis and pathogenicity testing. The samples were first surface disinfected and plated onto potato dextrose agar medium. Single-spored isolates were identified as F. oxysporum based on cultural and morphological characteristics, including white colonies with purple centres, infrequent macroconidia, abundant microconidia on short monophialides, and terminal or intercalary chlamydospores (Leslie and Summerell, 2006). Foc TR4 was identified from five isolates by endpoint and quantitative-PCR using four different primer sets (Li et al. 2013; Dita et al. 2010; Aguayo et al. 2017; Matthews et al. 2020). The same isolates were identified as VCG 01213 by successfully pairing nitrate non-utilizing (nit-1) mutants of the unknown strains with Nit-M testers of Foc TR4 available at Stellenbosch University (Leslie and Summerell, 2006). For pathogenicity testing, 3-month-old Cavendish banana plants cultivar 'Williams' were inoculated with isolates from Venezuela grown on sterile millet seed (Viljoen et al., 2017). Plants developed typical Fusarium wilt symptoms 60 days after inoculation, including yellowing of leaves that progressed from the older to the younger leaves, wilting, and internal discoloration of the pseudostem. Koch's postulates were fulfilled by reisolating and identifying Foc TR4 from the plants by qPCR (Matthews et al., 2020). These results provide scientific proof of the presence of Foc TR4 in Venezuela. The Venezuelan Plant Protection Organization (INSAI) has declared Foc TR4 as a newly introduced pest (January 19, 2023), and infested banana fields were placed under quarantine. Comprehensive surveys are now conducted in all production areas in Venezuela to assess the presence and impact of Foc TR4, and information campaigns were started to make farmers aware of biosecurity protocols. Collaborative initiatives and coordinated actions among all stakeholders are needed to prevent the spread of Foc TR4 to other countries in Latin America, and to develop Foc TR4-resistant bananas (Figueiredo et al. 2023).

2.
Pathogens ; 12(6)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37375510

ABSTRACT

Fusarium wilt of banana is a devastating disease that has decimated banana production worldwide. Host resistance to Fusarium oxysporum f. sp. Cubense (Foc), the causal agent of this disease, is genetically dissected in this study using two Musa acuminata ssp. Malaccensis segregating populations, segregating for Foc Tropical (TR4) and Subtropical (STR4) race 4 resistance. Marker loci and trait association using 11 SNP-based PCR markers allowed the candidate region to be delimited to a 12.9 cM genetic interval corresponding to a 959 kb region on chromosome 3 of 'DH-Pahang' reference assembly v4. Within this region, there was a cluster of pattern recognition receptors, namely leucine-rich repeat ectodomain containing receptor-like protein kinases, cysteine-rich cell-wall-associated protein kinases, and leaf rust 10 disease-resistance locus receptor-like proteins, positioned in an interspersed arrangement. Their transcript levels were rapidly upregulated in the resistant progenies but not in the susceptible F2 progenies at the onset of infection. This suggests that one or several of these genes may control resistance at this locus. To confirm the segregation of single-gene resistance, we generated an inter-cross between the resistant parent 'Ma850' and a susceptible line 'Ma848', to show that the STR4 resistance co-segregated with marker '28820' at this locus. Finally, an informative SNP marker 29730 allowed the locus-specific resistance to be assessed in a collection of diploid and polyploid banana plants. Of the 60 lines screened, 22 lines were predicted to carry resistance at this locus, including lines known to be TR4-resistant, such as 'Pahang', 'SH-3362', 'SH-3217', 'Ma-ITC0250', and 'DH-Pahang/CIRAD 930'. Additional screening in the International Institute for Tropical Agriculture's collection suggests that the dominant allele is common among the elite 'Matooke' NARITA hybrids, as well as in other triploid or tetraploid hybrids derived from East African highland bananas. Fine mapping and candidate gene identification will allow characterization of molecular mechanisms underlying the TR4 resistance. The markers developed in this study can now aid the marker-assisted selection of TR4 resistance in breeding programs around the world.

SELECTION OF CITATIONS
SEARCH DETAIL
...