Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 33(1): 353-360, 2017 01 10.
Article in English | MEDLINE | ID: mdl-27966970

ABSTRACT

We have examined the interactions between polymer-coated anionic (Ag-COOH) and cationic (Ag-NH) silver nanoparticles, and net-anionic lipid monolayers using dynamic surface pressure measurements. Monolayers composed of saturated or monounsaturated mixtures of anionic phosphatidylglycerol (PG) and zwitterionic phosphatidylcholine (PC) lipids (3:1 molar ratio) were used to determine how lipid packing and monolayer phase state influence the extent of nanoparticle binding and the monolayer response. Anionic Ag-COOH inserted into saturated dipalmitoyl-PC/PG (DPPC/DPPG) and dioleoyl-PC/PG (DOPC/DOPG) monolayers at a low initial surface pressure (10 mN m-1) and caused lipid condensation at high initial surface pressures (20 and 30 mN m-1). Hydrophobic interactions were responsible for insertion, while electrostatic and charge-dipole interactions with PCs were responsible for condensation. In contrast, cationic Ag-NH inserted only into saturated DPPC/DPPG monolayers and otherwise led to lipid condensation. For Ag-NH, adsorption was driven primarily by electrostatic interactions with PGs. Analysis of the subphase Ag and phosphorus concentrations confirmed that Ag-NH had a higher degree binding compared to Ag-COOH, and that the monolayer response was not due to lipid extraction.

2.
Proc Math Phys Eng Sci ; 472(2189): 20150892, 2016 May.
Article in English | MEDLINE | ID: mdl-27279770

ABSTRACT

A generalized thermomechanical model for adhesion was developed to elucidate the mechanisms of dissipation within the viscoelastic bulk of a hyperelastic hydrogel. Results show that in addition to the expected energy release rate of interface formation, as well as the viscous flow dissipation, the bulk composition exhibits dissipation due to phase inhomogeneity morphological changes. The mixing thermodynamics of the matrix and solvent determines the dynamics of the phase inhomogeneities, which can enhance or disrupt adhesion. The model also accounts for the time-dependent behaviour. A parameter is proposed to discern the dominant dissipation mechanism in hydrogel contact detachment.

3.
Colloids Surf B Biointerfaces ; 51(1): 25-9, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16814996

ABSTRACT

Perfluorooctane-1-sulfonic acid (PFOS) is emerging as an important persistent environmental pollutant. To gain insight into the interaction of PFOS with biological systems, the mixing behavior of dipalmitoylphosphatidylcholine (DPPC) with PFOS was studied using differential scanning calorimetry (DSC) and fluorescence anisotropy measurements. In the DSC experiments the onset temperature of the DPPC pretransition (Tp) decreased with increasing PFOS concentration, disappearing at XDPPC < or = 0.97. The main DPPC phase transition temperature showed a depression and peak broadening with increasing mole fraction of PFOS in both the DSC and the fluorescence anisotropy studies. From the melting point depression in the fluorescence anisotropy studies, which was observed at a concentration as low as 10 mg/L, an apparent partition coefficient of K = 5.7 x 10(4) (mole fraction basis) was calculated. These results suggest that PFOS has a high tendency to partition into lipid bilayers. These direct PFOS-DPPC interactions are one possible mechanism by which PFOS may contribute to adverse effects, for example neonatal mortality, in laboratory studies and possibly in humans.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Alkanesulfonic Acids/chemistry , Fluorocarbons/chemistry , Calorimetry, Differential Scanning , Drug Delivery Systems , Fluorescence Polarization , Lipid Bilayers/chemistry , Liposomes , Molecular Structure , Temperature
4.
Appl Microbiol Biotechnol ; 65(2): 149-57, 2004 Aug.
Article in English | MEDLINE | ID: mdl-14752579

ABSTRACT

The continuous culture of Clostridium thermocellum, a thermophilic bacterium capable of producing ethanol from cellulosic material, is demonstrated at elevated hydrostatic pressure (7.0 MPa, 17.3 MPa) and compared with cultures at atmospheric pressure. A commercial limitation of ethanol production by C. thermocellum is low ethanol yield due to the formation of organic acids (acetate, lactate). At elevated hydrostatic pressure, ethanol:acetate (E/A) ratios increased >10(2) relative to atmospheric pressure. Cell growth was inhibited by approximately 40% and 60% for incubations at 7.0 MPa and 17.3 MPa, respectively, relative to continuous culture at atmospheric pressure. A decrease in the theoretical maximum growth yield and an increase in the maintenance coefficient indicated that more cellobiose and ATP are channeled towards maintaining cellular function in pressurized cultures. Shifts in product selectivity toward ethanol are consistent with previous observations of hydrostatic pressure effects in batch cultures. The results are partially attributed to the increasing concentration of dissolved product gases (H2, CO2) with increasing pressure; and they highlight the utility of continuous culture experiments for the quantification of the complex role of dissolved gas and pressure effects on metabolic activity.


Subject(s)
Bioreactors/microbiology , Cellobiose/metabolism , Clostridium/growth & development , Hydrogen/metabolism , Acetic Acid/metabolism , Carbon Monoxide/pharmacology , Clostridium/metabolism , Culture Media , Ethanol/metabolism , Hydrogen/pharmacology , Hydrostatic Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...