Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(3): e59356, 2013.
Article in English | MEDLINE | ID: mdl-23527171

ABSTRACT

Globally, most restoration efforts focus on re-creating the physical structure (flora or physical features) of a target ecosystem with the assumption that other ecosystem components will follow. Here we investigate that assumption by documenting biogeographical patterns in an important invertebrate taxon, the parasitoid wasp family Ichneumonidae, in a recently reforested Hawaiian landscape. Specifically, we test the influence of (1) planting configurations (corridors versus patches), (2) vegetation age, (3) distance from mature native forest, (4) surrounding tree cover, and (5) plant community composition on ichneumonid richness, abundance, and composition. We sampled over 7,000 wasps, 96.5% of which were not native to Hawai'i. We found greater relative richness and abundance of ichneumonids, and substantially different communities, in restored areas compared to mature forest and abandoned pasturelands. Non-native ichneumonids drive these differences; restored areas and native forest did not differ in native ichneumonid abundance. Among restored areas, ichneumonid communities did not differ by planting age or configuration. As tree cover increased within 120 m of a sampling point, ichneumonid community composition increasingly resembled that found in native forest. Similarly, native ichneumonid abundance increased with proximity to native forest. Our results suggest that restoration plantings, if situated near target forest ecosystems and in areas with higher local tree cover, can facilitate restoration of native fauna even in a highly invaded system.


Subject(s)
Biodiversity , Ecosystem , Environmental Restoration and Remediation/methods , Trees/growth & development , Trees/parasitology , Wasps/physiology , Age Factors , Analysis of Variance , Animals , Hawaii , Linear Models , Population Density , Population Dynamics , Species Specificity
2.
Oecologia ; 129(1): 87-97, 2001 Sep.
Article in English | MEDLINE | ID: mdl-28547071

ABSTRACT

We evaluated feeding preference and damage by the slug, Arion subfuscus, on seedlings of two willow species, Salix sericea and S. eriocephala, and their F1 interspecific hybrids. Trays of seedlings were placed in the field and excised leaves were presented to slugs in choice tests. Slugs preferred feeding on and caused the most damage to S. eriocephala seedlings. S. sericea seedlings were least preferred and least damaged. F1 hybrid seedlings were intermediate in preference and damage. Slug preference of and damage to these seedlings decreased over time, suggesting developmental changes in resistance. Seedlings were sampled for phenolic glycoside and tannin chemistry weekly to coincide with the field and laboratory experiments. Concentrations of phenolic glycosides and tannins increased linearly with seedling age, coincident with changes in slug preference and damage, indicating a developmental change in defense. Slug deterrence was not detected at low concentrations of salicortin when painted on leaves or discs, but both salicortin and condensed tannins deterred slug feeding at concentrations between 50 and 100 mg/g, levels found in adult willows. Seedling performance was related to damage inflicted by slugs. Due to lower levels of damage when exposed to slugs in the field, S. sericea plants had significantly greater biomass than S. eriocephala plants. Biomass of F1 hybrids was equal to S. sericea when damaged. However, undamaged S. eriocephala and F1 hybrid plants had the greatest biomass. Because F1 hybrid seedlings performed as well as the most fit parent in all cases, slugs could be an important selective factor favoring introgression of defensive traits between these willow species.

SELECTION OF CITATIONS
SEARCH DETAIL
...