Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Breast Cancer Res Treat ; 135(3): 705-13, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22899222

ABSTRACT

DNA methylation patterns have been recognised as cancer-specific markers with high potential for clinical applications. We aimed at identifying methylation variations that differentiate between breast cancers and other breast tissue entities to establish a signature for diagnosis. Candidate genomic loci were analysed in 117 fresh-frozen breast specimens, which included cancer, benign and normal breast tissues from patients as well as material from healthy individuals. A cancer-specific DNA methylation signature was identified by microarray analysis in a test set of samples (n = 52, p < 2.1 × 10(-4)) and its performance was assessed through bisulphite pyrosequencing in an independent validation set (n = 65, p < 1.9 × 10(-7)). The signature is associated with SFRP2 and GHSR genes, and exhibited significant hypermethylation in cancers. Normal-appearing breast tissues from cancer patients were also methylated at these loci but to a markedly lower extent. This occurrence of methylated DNA in normal breast tissue of cancer patients is indicative of an epigenetic field defect. Concerning diagnosis, receiver operating characteristic curves and the corresponding area under the curve (AUC) analysis demonstrated a very high sensitivity and specificity of 89.3 and 100 %, respectively, for the GHSR methylation pattern (AUC >0.99). To date, this represents the DNA methylation marker of the highest sensitivity and specificity for breast cancer diagnosis. Functionally, ectopic expression of GHSR in a cell line model reduced breast cancer cell invasion without affecting cell viability upon stimulation of cells with ghrelin. Our data suggest a link between epigenetic down-regulation of GHSR and breast cancer cell invasion.


Subject(s)
Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Receptors, Ghrelin/genetics , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , CpG Islands , DNA Methylation , Down-Regulation , Epigenesis, Genetic , Female , Gene Expression Regulation, Neoplastic , Humans , Membrane Proteins/genetics , Microarray Analysis , Predictive Value of Tests , ROC Curve , Receptors, Ghrelin/metabolism , Reference Values , Reproducibility of Results , Sensitivity and Specificity
2.
PLoS One ; 5(9): e12620, 2010 Sep 07.
Article in English | MEDLINE | ID: mdl-20838643

ABSTRACT

BACKGROUND: International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection. METHODOLOGY/PRINCIPAL FINDINGS: This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S), cytochrome b (cyt b), and cytochrome oxidase subunit I (COI) for the identification of 50 European marine fish species by combining techniques of "DNA barcoding" and microarrays. In a DNA barcoding approach, neighbour Joining (NJ) phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the "position of label" effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (>90%) renders the DNA barcoding marker as rather unsuitable for this high-throughput technology. CONCLUSIONS/SIGNIFICANCE: Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products.


Subject(s)
Fishes/classification , Fishes/genetics , Animals , Cytochromes b/genetics , DNA/genetics , DNA Barcoding, Taxonomic , DNA, Ribosomal/genetics , Electron Transport Complex IV/genetics , Fish Proteins/genetics , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...