Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119706, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521467

ABSTRACT

S. cerevisiae (or budding yeast) is an important micro-organism for sucrose-based fermentation in biotechnology. Yet, it is largely unknown how budding yeast adapts to sucrose transitions. Sucrose can only be metabolized when the invertase or the maltose machinery are expressed and we propose that the Gpr1p receptor signals extracellular sucrose availability via the cAMP peak to adapt cells accordingly. A transition to sucrose or glucose gave a transient cAMP peak which was maximally induced for sucrose. When transitioned to sucrose, cAMP signalling mutants showed an impaired cAMP peak together with a lower growth rate, a longer lag phase and a higher final OD600 compared to a glucose transition. These effects were not caused by altered activity or expression of enzymes involved in sucrose metabolism and imply a more general metabolic adaptation defect. Basal cAMP levels were comparable among the mutant strains, suggesting that the transient cAMP peak is required to adapt cells correctly to sucrose. We propose that the short-term dynamics of the cAMP signalling cascade detects long-term extracellular sucrose availability and speculate that its function is to maintain a fermentative phenotype at continuously low glucose and fructose concentrations.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomycetales , Saccharomyces cerevisiae/metabolism , Saccharomycetales/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Glucose/metabolism , Sucrose/metabolism , Sucrose/pharmacology
2.
FEMS Yeast Res ; 232023 01 04.
Article in English | MEDLINE | ID: mdl-37173282

ABSTRACT

Budding yeast uses the TORC1-Sch9p and cAMP-PKA signalling pathways to regulate adaptations to changing nutrient environments. Dynamic and single-cell measurements of the activity of these cascades will improve our understanding of the cellular adaptation of yeast. Here, we employed the AKAR3-EV biosensor developed for mammalian cells to measure the cellular phosphorylation status determined by Sch9p and PKA activity in budding yeast. Using various mutant strains and inhibitors, we show that AKAR3-EV measures the Sch9p- and PKA-dependent phosphorylation status in intact yeast cells. At the single-cell level, we found that the phosphorylation responses are homogenous for glucose, sucrose, and fructose, but heterogeneous for mannose. Cells that start to grow after a transition to mannose correspond to higher normalized Förster resonance energy transfer (FRET) levels, in line with the involvement of Sch9p and PKA pathways to stimulate growth-related processes. The Sch9p and PKA pathways have a relatively high affinity for glucose (K0.5 of 0.24 mM) under glucose-derepressed conditions. Lastly, steady-state FRET levels of AKAR3-EV seem to be independent of growth rates, suggesting that Sch9p- and PKA-dependent phosphorylation activities are transient responses to nutrient transitions. We believe that the AKAR3-EV sensor is an excellent addition to the biosensor arsenal for illuminating cellular adaptation in single yeast cells.


Subject(s)
Biosensing Techniques , Saccharomyces cerevisiae Proteins , Saccharomycetales , Animals , Saccharomyces cerevisiae/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Mannose/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Glucose/metabolism , Mammals/metabolism
3.
Int J Mol Sci ; 23(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36142240

ABSTRACT

For the design of next-generation tuberculosis chemotherapy, insight into bacterial defence against drugs is required. Currently, targeting respiration has attracted strong attention for combatting drug-resistant mycobacteria. Q203 (telacebec), an inhibitor of the cytochrome bcc complex in the mycobacterial respiratory chain, is currently evaluated in phase-2 clinical trials. Q203 has bacteriostatic activity against M. tuberculosis, which can be converted to bactericidal activity by concurrently inhibiting an alternative branch of the mycobacterial respiratory chain, cytochrome bd. In contrast, non-tuberculous mycobacteria, such as Mycobacterium smegmatis, show only very little sensitivity to Q203. In this report, we investigated factors that M. smegmatis employs to adapt to Q203 in the presence or absence of a functional cytochrome bd, especially regarding its terminal oxidases. In the presence of a functional cytochrome bd, M. smegmatis responds to Q203 by increasing the expression of cytochrome bcc as well as of cytochrome bd, whereas a M. smegmatisbd-KO strain adapted to Q203 by increasing the expression of cytochrome bcc. Interestingly, single-cell studies revealed cell-to-cell variability in drug adaptation. We also investigated the role of a putative second cytochrome bd isoform postulated for M. smegmatis. Although this putative isoform showed differential expression in response to Q203 in the M. smegmatisbd-KO strain, it did not display functional features similar to the characterised cytochrome bd variant.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Cytochromes/metabolism , Humans , Imidazoles , Mycobacterium smegmatis , Mycobacterium tuberculosis/metabolism , Oxidoreductases/metabolism , Piperidines , Pyridines , Tuberculosis/drug therapy
4.
Mol Biol Cell ; 32(13): 1229-1240, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33881352

ABSTRACT

The cAMP-PKA signaling cascade in budding yeast regulates adaptation to changing environments. We developed yEPAC, a FRET-based biosensor for cAMP measurements in yeast. We used this sensor with flow cytometry for high-throughput single cell-level quantification during dynamic changes in response to sudden nutrient transitions. We found that the characteristic cAMP peak differentiates between different carbon source transitions and is rather homogenous among single cells, especially for transitions to glucose. The peaks are mediated by a combination of extracellular sensing and intracellular metabolism. Moreover, the cAMP peak follows the Weber-Fechner law; its height scales with the relative, and not the absolute, change in glucose. Last, our results suggest that the cAMP peak height conveys information about prospective growth rates. In conclusion, our yEPAC-sensor makes possible new avenues for understanding yeast physiology, signaling, and metabolic adaptation.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/analysis , Cyclic AMP/analysis , Fluorescence Resonance Energy Transfer/methods , Biosensing Techniques/methods , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Flow Cytometry/methods , Glucose/metabolism , High-Throughput Screening Assays/methods , Prospective Studies , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction/physiology , Single-Cell Analysis/methods
5.
Metab Eng ; 64: 1-14, 2021 03.
Article in English | MEDLINE | ID: mdl-33418011

ABSTRACT

In S. cerevisiae and many other micro-organisms an increase in metabolic efficiency (i.e. ATP yield on carbon) is accompanied by a decrease in growth rate. From a fundamental point of view, studying these yield-rate trade-offs provides insight in for example microbial evolution and cellular regulation. From a biotechnological point of view, increasing the ATP yield on carbon might increase the yield of anabolic products. We here aimed to select S. cerevisiae mutants with an increased biomass yield. Serial propagation of individual cells in water-in-oil emulsions previously enabled the selection of lactococci with increased biomass yields, and adapting this protocol for yeast allowed us to enrich an engineered Crabtree-negative S. cerevisiae strain with a high biomass yield on glucose. When we started the selection with an S. cerevisiae deletion collection, serial propagation in emulsion enriched hxk2Δ and reg1Δ strains with an increased biomass yield on glucose. Surprisingly, a tps1Δ strain was highly abundant in both emulsion- and suspension-propagated populations. In a separate experiment we propagated a chemically mutagenized S. cerevisiae population in emulsion, which resulted in mutants with a higher cell number yield on glucose, but no significantly changed biomass yield. Genome analyses indicate that genes involved in glucose repression and cell cycle processes play a role in the selected phenotypes. The repeated identification of mutations in genes involved in glucose-repression indicates that serial propagation in emulsion is a valuable tool to study metabolic efficiency in S. cerevisiae.


Subject(s)
Glucose , Saccharomyces cerevisiae , Biomass , Cell Size , Emulsions , Saccharomyces cerevisiae/genetics , Water
6.
ACS Sens ; 5(3): 814-822, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32077276

ABSTRACT

Adenosine 5-triphosphate (ATP) is the main free energy carrier in metabolism. In budding yeast, shifts to glucose-rich conditions cause dynamic changes in ATP levels, but it is unclear how heterogeneous these dynamics are at a single-cell level. Furthermore, pH also changes and affects readout of fluorescence-based biosensors for single-cell measurements. To measure ATP changes reliably in single yeast cells, we developed yAT1.03, an adapted version of the AT1.03 ATP biosensor, that is pH-insensitive. We show that pregrowth conditions largely affect ATP dynamics during transitions. Moreover, single-cell analyses showed a large variety in ATP responses, which implies large differences of glycolytic startup between individual cells. We found three clusters of dynamic responses, and we show that a small subpopulation of wild-type cells reached an imbalanced state during glycolytic startup, characterized by low ATP levels. These results confirm the need for new tools to study dynamic responses of individual cells in dynamic environments.


Subject(s)
Adenosine Triphosphate/metabolism , Saccharomyces cerevisiae/metabolism , Biosensing Techniques , Fluorescence Resonance Energy Transfer , Glycolysis , Microscopy, Fluorescence , Nutrients/metabolism , Saccharomyces cerevisiae/genetics , Single-Cell Analysis
7.
Sci Rep ; 9(1): 2234, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30783202

ABSTRACT

Fluorescent proteins (FPs) are widely used in many organisms, but are commonly characterised in vitro. However, the in vitro properties may poorly reflect in vivo performance. Therefore, we characterised 27 FPs in vivo using Saccharomyces cerevisiae as model organism. We linked the FPs via a T2A peptide to a control FP, producing equimolar expression of the 2 FPs from 1 plasmid. Using this strategy, we characterised the FPs for brightness, photostability, photochromicity and pH-sensitivity, achieving a comprehensive in vivo characterisation. Many FPs showed different in vivo properties compared to existing in vitro data. Additionally, various FPs were photochromic, which affects readouts due to complex bleaching kinetics. Finally, we codon optimized the best performing FPs for optimal expression in yeast, and found that codon-optimization alters FP characteristics. These FPs improve experimental signal readout, opening new experimental possibilities. Our results may guide future studies in yeast that employ fluorescent proteins.


Subject(s)
Gene Expression , Green Fluorescent Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Green Fluorescent Proteins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics
8.
FASEB J ; 33(1): 557-571, 2019 01.
Article in English | MEDLINE | ID: mdl-30001166

ABSTRACT

Diffuse gliomas often carry point mutations in isocitrate dehydrogenase ( IDH1mut), resulting in metabolic stress. Although IDHmut gliomas are difficult to culture in vitro, they thrive in the brain via diffuse infiltration, suggesting brain-specific tumor-stroma interactions that can compensate for IDH-1 deficits. To elucidate the metabolic adjustments in clinical IDHmut gliomas that contribute to their malignancy, we applied a recently developed method of targeted quantitative RNA next-generation sequencing to 66 clinical gliomas and relevant orthotopic glioma xenografts, with and without the endogenous IDH-1R132H mutation. Datasets were analyzed in R using Manhattan plots to calculate distance between expression profiles, Ward's method to perform unsupervised agglomerative clustering, and the Mann Whitney U test and Fisher's exact tests for supervised group analyses. The significance of transcriptome data was investigated by protein analysis, in situ enzymatic activity mapping, and in vivo magnetic resonance spectroscopy of orthotopic IDH1mut- and IDHwt-glioma xenografts. Gene set enrichment analyses of clinical IDH1mut gliomas strongly suggest a role for catabolism of lactate and the neurotransmitter glutamate, whereas, in IDHwt gliomas, processing of glucose and glutamine are the predominant metabolic pathways. Further evidence of the differential metabolic activity in these cancers comes from in situ enzymatic mapping studies and preclinical in vivo magnetic resonance spectroscopy imaging. Our data support an evolutionary model in which IDHmut glioma cells exist in symbiosis with supportive neuronal cells and astrocytes as suppliers of glutamate and lactate, possibly explaining the diffuse nature of these cancers. The dependency on glutamate and lactate opens the way for novel approaches in the treatment of IDHmut gliomas.-Lenting, K., Khurshed, M., Peeters, T. H., van den Heuvel, C. N. A. M., van Lith, S. A. M., de Bitter, T., Hendriks, W., Span, P. N., Molenaar, R. J., Botman, D., Verrijp, K., Heerschap, A., ter Laan, M., Kusters, B., van Ewijk, A., Huynen, M. A., van Noorden, C. J. F., Leenders, W. P. J. Isocitrate dehydrogenase 1-mutated human gliomas depend on lactate and glutamate to alleviate metabolic stress.


Subject(s)
Brain Neoplasms/pathology , Glioma/pathology , Glutamic Acid/metabolism , Isocitrate Dehydrogenase/genetics , Lactic Acid/metabolism , Mutation , Stress, Physiological , 4-Aminobutyrate Transaminase/genetics , 4-Aminobutyrate Transaminase/metabolism , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glioma/genetics , Glioma/metabolism , Glutamate Dehydrogenase/genetics , Glutamate Dehydrogenase/metabolism , Glutaminase/genetics , Glutaminase/metabolism , Humans , Isocitrate Dehydrogenase/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Succinate-Semialdehyde Dehydrogenase/genetics , Succinate-Semialdehyde Dehydrogenase/metabolism , Transcriptome , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
9.
Cancer Res ; 75(22): 4790-802, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26363012

ABSTRACT

Isocitrate dehydrogenase 1 (IDH1) is mutated in various types of human cancer to IDH1(R132H), a structural alteration that leads to catalysis of α-ketoglutarate to the oncometabolite D-2-hydroxyglutarate. In this study, we present evidence that small-molecule inhibitors of IDH1(R132H) that are being developed for cancer therapy may pose risks with coadministration of radiotherapy. Cancer cells heterozygous for the IDH1(R132H) mutation exhibited less IDH-mediated production of NADPH, such that after exposure to ionizing radiation (IR), there were higher levels of reactive oxygen species, DNA double-strand breaks, and cell death compared with IDH1 wild-type cells. These effects were reversed by the IDH1(R132H) inhibitor AGI-5198. Exposure of IDH1 wild-type cells to D-2-hydroxyglutarate was sufficient to reduce IDH-mediated NADPH production and increase IR sensitivity. Mechanistic investigations revealed that the radiosensitivity of heterozygous cells was independent of the well-described DNA hypermethylation phenotype in IDH1-mutated cancers. Thus, our results argue that altered oxidative stress responses are a plausible mechanism to understand the radiosensitivity of IDH1-mutated cancer cells. Further, they offer an explanation for the relatively longer survival of patients with IDH1-mutated tumors, and they imply that administration of IDH1(R132H) inhibitors in these patients may limit irradiation efficacy in this setting.


Subject(s)
Antineoplastic Agents/pharmacology , Benzeneacetamides/pharmacology , Glioblastoma/genetics , Imidazoles/pharmacology , Isocitrate Dehydrogenase/genetics , Radiation Tolerance/drug effects , Blotting, Western , Cell Line, Tumor , Chemoradiotherapy/adverse effects , DNA Methylation/drug effects , DNA Methylation/radiation effects , Enzyme Inhibitors/pharmacology , Fluorescent Antibody Technique , Gene Knock-In Techniques , Glioblastoma/pathology , Humans , In Vitro Techniques , Mutation , NADP/biosynthesis , Oxidative Stress/drug effects , Oxidative Stress/radiation effects
10.
J Histochem Cytochem ; 62(11): 802-12, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25124006

ABSTRACT

Glutamate dehydrogenase (GDH) catalyses the reversible conversion of glutamate into α-ketoglutarate with the concomitant reduction of NAD(P)(+) to NAD(P)H or vice versa. GDH activity is subject to complex allosteric regulation including substrate inhibition. To determine GDH kinetics in situ, we assessed the effects of various glutamate concentrations in combination with either the coenzyme NAD(+) or NADP(+) on GDH activity in mouse liver cryostat sections using metabolic mapping. NAD(+)-dependent GDH V(max) was 2.5-fold higher than NADP(+)-dependent V(max), whereas the K(m) was similar, 1.92 mM versus 1.66 mM, when NAD(+) or NADP(+) was used, respectively. With either coenzyme, V(max) was determined at 10 mM glutamate and substrate inhibition was observed at higher glutamate concentrations with a K(i) of 12.2 and 3.95 for NAD(+) and NADP(+) used as coenzyme, respectively. NAD(+)- and NADP(+)-dependent GDH activities were examined in various mouse tissues. GDH activity was highest in liver and much lower in other tissues. In all tissues, the highest activity was found when NAD(+) was used as a coenzyme. In conclusion, GDH activity in mice is highest in the liver with NAD(+) as a coenzyme and highest GDH activity was determined at a glutamate concentration of 10 mM.


Subject(s)
Glutamate Dehydrogenase/metabolism , Image Cytometry , Liver/enzymology , Animals , Enzyme Activation , Kinetics , Liver/metabolism , Male , Mice , Mice, Inbred C57BL
11.
J Histochem Cytochem ; 62(11): 813-26, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25163927

ABSTRACT

Phosphate-activated glutaminase (PAG) converts glutamine to glutamate as part of the glutaminolysis pathway in mitochondria. Two genes, GLS1 and GLS2, which encode for kidney-type PAG and liver-type PAG, respectively, differ in their tissue-specific activities and kinetics. Tissue-specific PAG activity and its kinetics were determined by metabolic mapping using a tetrazolium salt and glutamate dehydrogenase as an auxiliary enzyme in the presence of various glutamine concentrations. In kidney and brain, PAG showed Michaelis-Menten kinetics with a K(m) of 0.6 mM glutamine and a V(max) of 1.1 µmol/mL/min when using 5 mM glutamine. PAG activity was high in the kidney cortex and inner medulla but low in the outer medulla, papillary tip, glomeruli and the lis of Henle. In brain tissue sections, PAG was active in the grey matter and inactive in myelin-rich regions. Liver PAG showed allosteric regulation with a K(m) of 11.6 mM glutamine and a V(max) of 0.5 µmol/mL/min when using 20 mM glutamine. The specificity of the method was shown after incubation of brain tissue sections with the PAG inhibitor 6-diazo-5-oxo-L-norleucine. PAG activity was decreased to 22% in the presence of 2 mM 6-diazo-5-oxo-L-norleucine. At low glutamine concentrations, PAG activity was higher in periportal regions, indicating a lower K(m) for periportal PAG. When compared with liver, kidney and brain, other tissues showed 3-fold to 6-fold less PAG activity. In conclusion, PAG is mainly active in mouse kidney, brain and liver, and shows different kinetics depending on which type of PAG is expressed.


Subject(s)
Glutaminase/metabolism , Image Cytometry , Liver/enzymology , Animals , Enzyme Activation , Kinetics , Liver/metabolism , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...