Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 165: 458-465, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28153283

ABSTRACT

An immunosensor for fast and accurate determination of C-reactive protein (CRP) in human serum samples based on an array of all-silicon broad-band Mach-Zehnder interferometers (BB-MZIs) is demonstrated. The detection was based on monitoring the spectral shifts during the binding of CRP on the antibody molecules that have been immobilized on the sensing arms of the BB-MZIs. By employing the reaction rate as the analytical signal the assay time was compressed to few minutes. The detection limit was 2.1ng/mL, the quantification limit was 4.2ng/mL and the linear dynamic range extended up to 100ng/mL. The measurements performed in human serum samples with the developed immunosensor were characterized by high repeatability and accuracy as it was demonstrated by dilution linearity and recovery experiments. In addition, the concentration values determined were in excellent agreement with those determined for the same samples by a standard clinical laboratory method. The compact size of the chip makes the proposed immunosensor attractive for incorporation into miniaturized devices for the determination of clinical analytes at the point-of-need.


Subject(s)
Biosensing Techniques/methods , C-Reactive Protein/analysis , Equipment Design , Interferometry/instrumentation , Interferometry/methods , Silicon/chemistry , Humans , Limit of Detection
2.
Anal Bioanal Chem ; 407(14): 3995-4004, 2015 May.
Article in English | MEDLINE | ID: mdl-25796524

ABSTRACT

The label-free detection of bovine milk in goat milk through a miniaturized optical biosensor is presented. The biosensor consists of ten planar silicon nitride waveguide Broad-Band Mach-Zehnder interferometers (BB-MZIs) monolithically integrated and self-aligned with their respective silicon LEDs on the same Si chip. The BB-MZIs were transformed to biosensing transducers by functionalizing their sensing arm with bovine k-casein. Measurements were performed by continuously recording the transmission spectra of each interferometer through an external spectrometer. The amount of bovine milk in goat milk was determined through a competitive immunoassay by passing over the sensor mixtures of anti-k-casein antibodies with the calibrators or the samples. The output spectra of each BB-MZI recorded during the reaction were subjected to Discrete Fourier Transform in order to convert the observed spectral shifts to phase shifts in the wavenumber domain. The method had a detection limit of 0.04 % (v/v) bovine milk in goat milk, dynamic range 0.1-1.0 % (v/v), recoveries 93-110 %, and intra- and inter-assay coefficients of variation less than 12 and 15 %, respectively. The proposed biosensor compared well in terms of analytical performance with a competitive ELISA developed using the same monoclonal antibodies. Nevertheless, the duration of the biosensor assay was 10 min whereas the ELISA required 2 h. Thus, the fast and sensitive determinations along with the small size of the sensor make it ideal for incorporation into portable devices for assessment of goat or ewe's milk adulteration with bovine milk at the point-of-need.


Subject(s)
Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Food Contamination , Milk/chemistry , Animals , Antibodies , Electromagnetic Phenomena , Goats , Miniaturization , Optical Phenomena , Time Factors
3.
Article in English | MEDLINE | ID: mdl-22256111

ABSTRACT

Arrays of monolithically integrated Mach-Zehnder interferometers were fabricated by standard silicon technology and applied to the label-free real-time monitoring of biomolecular interactions. Chips accommodating 10 MZIs were functionalized with recognition biomolecules and encapsulated in wafer scale. Detection is based on Frequency-Resolved Mach-Zehnder Interferometry, a new concept that takes advantage of the broad-band input spectrum by monitoring the changes for every input frequency. The sensitivity of the device in terms of refractive index changes (Δn) was calculated using isopropanol/water solutions. A detection limit of Δn = 4 × 10(-6) was calculated. The bioanalytical capabilities of the device there demonstrated through model binding assays (biotin/streptavidin) as well as the detection of total prostate specific antigen in serum samples using devices coated with antigen-specific monoclonal antibody. Detection limits at the pM range were determined.


Subject(s)
Biochemical Phenomena , Biosensing Techniques/instrumentation , Staining and Labeling , Animals , Biotinylation , Cattle , Fluorescent Dyes/metabolism , Humans , Microscopy, Fluorescence , Prostate-Specific Antigen/blood , Serum Albumin, Bovine/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...