Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38758056

ABSTRACT

OBJECTIVE: Identification of biomarkers of cognitive recovery after traumatic brain injury (TBI) will inform care and improve outcomes. This study assessed the utility of neurofilament (NF-L and pNF-H), a marker of neuronal injury, informing cognitive performance following moderate-to-severe TBI (msTBI). SETTING: Level 1 trauma center and outpatient via postdischarge follow-up. PARTICIPANTS: N = 94. Inclusion criteria: Glasgow Coma Scale score less than 13 or 13-15 with clinical evidence of moderate-to-severe injury traumatic brain injury on clinical imaging. Exclusion criteria: neurodegenerative condition, brain death within 3 days after injury. DESIGN: Prospective observational study. Blood samples were collected at several time points post-injury. Cognitive testing was completed at 6 months post-injury. MAIN MEASURES: Serum NF-L (Human Neurology 4-Plex B) pNF-H (SR-X) as measured by SIMOA Quanterix assay. Divided into 3 categorical time points at days post-injury (DPI): 0-15 DPI, 16-90 DPI, and >90 DPI. Cognitive composite comprised executive functioning measures derived from 3 standardized neuropsychological tests (eg, Delis-Kaplan Executive Function System: Verbal Fluency, California Verbal Learning Test, Second Edition, Wechsler Adult Intelligence Scale, Third Edition). RESULTS: pNF-H at 16-90 DPI was associated with cognitive outcomes including a cognitive-executive composite score at 6 months (ß = -.430, t34 = -3.190, P = .003). CONCLUSIONS: Results suggest that "subacute" elevation of serum pNF-H levels may be associated with protracted/poor cognitive recovery from msTBI and may be a target for intervention. Interpretation is limited by small sample size and including only those who were able to complete cognitive testing.

2.
J Sleep Res ; 33(1): e13891, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37039398

ABSTRACT

Sleep problems are common among veterans with post-traumatic stress disorder and closely associated with hyperarousal symptoms. Transcutaneous vagus nerve stimulation (tVNS) may have potential to improve sleep quality in veterans with PTSD through effects on brain systems relevant to hyperarousal and sleep-wake regulation. The current pilot study examines the effect of 1 h of tVNS administered at "lights out" on sleep architecture, microstructure, and autonomic activity. Thirteen veterans with PTSD completed two nights of laboratory-based polysomnography during which they received 1 h of either active tVNS (tragus) or sham stimulation (earlobe) at "lights out" with randomised order. Sleep staging and stability metrics were derived from polysomnography data. Autonomic activity during sleep was assessed using the Porges-Bohrer method for calculating respiratory sinus arrhythmia (RSAP-B ). Paired t-tests revealed a small decrease in the total sleep time (d = -0.31), increase in N3 sleep (d = 0.23), and a small-to-moderate decrease in REM sleep (d = -0.48) on nights of active tVNS relative to sham stimulation. tVNS was also associated with a moderate reduction in cyclic alternating pattern (CAP) rate (d = -0.65) and small-to-moderate increase in RSAP-B during NREM sleep. Greater NREM RSAP-B was associated with a reduced CAP rate and NREM alpha power. This pilot study provides preliminary evidence that tVNS may improve sleep depth and stability in veterans with PTSD, as well as increase parasympathetically mediated nocturnal autonomic activity. These results warrant continued investigation into tVNS as a potential tool for treating sleep disturbance in veterans with PTSD.


Subject(s)
Stress Disorders, Post-Traumatic , Vagus Nerve Stimulation , Veterans , Humans , Stress Disorders, Post-Traumatic/therapy , Vagus Nerve Stimulation/methods , Pilot Projects , Sleep
3.
Med Cannabis Cannabinoids ; 6(1): 160-169, 2023.
Article in English | MEDLINE | ID: mdl-37965569

ABSTRACT

Introduction: Post-traumatic stress disorder (PTSD) is a debilitating disorder experienced by a subgroup of individuals following a life-threatening trauma. Several US states have passed laws permitting the medical use of marijuana (MMJ) by individuals with PTSD, despite very little scientific indication on the appropriateness of marijuana as a therapy for PTSD. This prospective pilot study of adults with confirmed PTSD in Florida (FL) investigated whether PTSD symptoms, sleep quality, affect, and general physical and mental health/well-being improved post-initiation of MMJ treatment. Methods: Participants, N = 15, were recruited from two MMJ clinics in Gainesville and Jacksonville, FL. To be eligible, participants had to be 18 years of age or older, not currently on MMJ, and willing to abstain from recreational marijuana, if using any, until the State Medical Cannabis Card was obtained, screen positive for PTSD. Participants were assessed at baseline (pre-MMJ initiation) and 30 and 70 days post-MMJ initiation using the Pittsburgh Sleep Quality Index (PSQI), PTSD Checklist for DSM-5 (PCL-5), Positive and Negative Affect Schedule (PANAS), PROMIS Global Health V1.2, and semi-structured marijuana and other substance use assessment. Results: PTSD symptom severity as measured by total PCL-5 score improved significantly at 30- and 70-day follow-ups. Similarly, statistically significant reductions in nightmares were reported at 30- and 70-day follow-ups. Corresponding improvements in sleep were noticed with participants reporting increased duration of sleep hours, sleep quality, sleep efficiency, and total PSQI score. Likewise, negative affect and global mental health improved significantly at follow-up. According to the post hoc analyses, the most statistically significant changes occurred between baseline and 30-day follow-up. The exception to this pattern was nightmares, which did not show significant improvement until day 70. Conclusion: The findings of this study highlight the potential of MMJ in improving patient outcomes for those with PTSD, particularly concerning sleep disturbances, which often do not respond to currently available treatments.

4.
Ann N Y Acad Sci ; 1526(1): 30-49, 2023 08.
Article in English | MEDLINE | ID: mdl-37393069

ABSTRACT

This study aimed to synthesize existing research on the effects of sleep disturbances on trauma-focused psychotherapy outcomes in adults with posttraumatic stress disorder (PTSD). A systematic review using PubMed, PsycINFO, Embase, Web of Science, and PTSDpubs was performed up to April 2021. Two independent reviewers screened articles for inclusion, performed data extraction, and assessed risk of bias and certainty of the evidence. Narrative synthesis was conducted based on the type of sleep disorder symptom assessed. Sixteen primary studies were included in this review, the majority of which had a high overall risk of bias. Results suggested that sleep disorder symptoms were associated with higher overall PTSD severity across treatment; however, they did not interfere with treatment effectiveness, with the exception of sleep-disordered breathing. Improvements in insomnia, sleep duration, and sleep quality during treatment were associated with greater treatment gains. Certainty of the evidence ranged from low to very low. These results suggest that it may not be necessary to address sleep disorder symptoms prior to initiating trauma-focused psychotherapy. Instead, concurrent treatment of sleep- and trauma-related symptoms may be most beneficial. Continued research is needed to clarify the mechanistic relationship between sleep and treatment outcomes and to guide clinical decision-making.


Subject(s)
Sleep Wake Disorders , Stress Disorders, Post-Traumatic , Adult , Humans , Stress Disorders, Post-Traumatic/therapy , Psychotherapy/methods , Sleep Wake Disorders/therapy , Sleep Wake Disorders/complications , Treatment Outcome , Sleep
5.
NMR Biomed ; 36(7): e4897, 2023 07.
Article in English | MEDLINE | ID: mdl-36628927

ABSTRACT

Obesity is associated with adverse effects on brain health, including an increased risk of neurodegenerative diseases. Changes in cerebral metabolism may underlie or precede structural and functional brain changes. While bariatric surgery is known to be effective in inducing weight loss and improving obesity-related medical comorbidities, few studies have examined whether it may be able to improve brain metabolism. In the present study, we examined changes in cerebral metabolite concentrations in participants with obesity who underwent bariatric surgery. Thirty-five patients with obesity (body mass index ≥ 35 kg/m2 ) were recruited from a bariatric surgery candidate nutrition class. They completed single voxel proton magnetic resonance spectroscopy at baseline (presurgery) and within 1 year postsurgery. Spectra were obtained from a large medial frontal brain region using a PRESS sequence on a 3-T Siemens Verio scanner. The acquisition parameters were TR = 3000 ms and TE = 37 ms. Tissue-corrected metabolite concentrations were determined using Osprey. Paired t-tests were used to examine within-subject change in metabolite concentrations, and correlations were used to relate these changes to other health-related outcomes, including weight loss and glycated hemoglobin (HbA1c ), a measure of blood sugar levels. Bariatric surgery was associated with a reduction in cerebral choline-containing compounds (Cho; t [34] = - 3.79, p < 0.001, d = -0.64) and myo-inositol (mI; t [34] = - 2.81, p < 0.01, d = -0.47) concentrations. There were no significant changes in N-acetyl-aspartate, creatine, or glutamate and glutamine concentrations. Reductions in Cho were associated with greater weight loss (r = 0.40, p < 0.05), and reductions in mI were associated with greater reductions in HbA1c (r = 0.44, p < 0.05). In conclusion, participants who underwent bariatric surgery exhibited reductions in cerebral Cho and mI concentrations, which were associated with improvements in weight loss and glycemic control. Given that elevated levels of Cho and mI have been implicated in neuroinflammation, reduction in these metabolites after bariatric surgery may reflect amelioration of obesity-related neuroinflammatory processes. As such, our results provide evidence that bariatric surgery may improve brain health and metabolism in individuals with obesity.


Subject(s)
Bariatric Surgery , Humans , Obesity/surgery , Creatine/metabolism , Proton Magnetic Resonance Spectroscopy , Weight Loss , Choline/metabolism , Inositol/metabolism
6.
Neurotherapeutics ; 20(2): 419-430, 2023 03.
Article in English | MEDLINE | ID: mdl-36477709

ABSTRACT

Better treatments are needed to improve cognition and brain health in people with mild cognitive impairment (MCI) and Alzheimer's disease (AD). Transcutaneous vagus nerve stimulation (tVNS) may impact brain networks relevant to AD through multiple mechanisms including, but not limited to, projection to the locus coeruleus, the brain's primary source of norepinephrine, and reduction in inflammation. Neuropathological data suggest that the locus coeruleus may be an early site of tau pathology in AD. Thus, tVNS may modify the activity of networks that are impaired and progressively deteriorate in patients with MCI and AD. Fifty patients with MCI (28 women) confirmed via diagnostic consensus conference prior to MRI (sources of info: Montreal Cognitive Assessment Test (MOCA), Clinical Dementia Rating scale (CDR), Functional Activities Questionnaire (FAQ), Hopkins Verbal Learning Test - Revised (HVLT-R) and medical record review) underwent resting state functional magnetic resonance imaging (fMRI) on a Siemens 3 T scanner during tVNS (left tragus, n = 25) or sham control conditions (left ear lobe, n = 25). During unilateral left tVNS, compared with ear lobe stimulation, patients with MCI showed alterations in functional connectivity between regions of the brain that are important in semantic and salience functions including regions of the temporal and parietal lobes. Furthermore, connectivity from hippocampi to several cortical and subcortical clusters of ROIs also demonstrated change with tVNS compared with ear lobe stimulation. In conclusion, tVNS modified the activity of brain networks in which disruption correlates with deterioration in AD. These findings suggest afferent target engagement of tVNS, which carries implications for the development of noninvasive therapeutic intervention in the MCI population.


Subject(s)
Cognitive Dysfunction , Vagus Nerve Stimulation , Humans , Female , Vagus Nerve Stimulation/methods , Semantics , Brain/diagnostic imaging , Magnetic Resonance Imaging , Hippocampus , Vagus Nerve/physiology , Cognitive Dysfunction/therapy
7.
Front Neuroimaging ; 2: 1265001, 2023.
Article in English | MEDLINE | ID: mdl-38268858

ABSTRACT

Background: Posttraumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) share overlapping symptom presentations and are highly comorbid conditions among Veteran populations. Despite elevated presentations of PTSD after mTBI, mechanisms linking the two are unclear, although both have been associated with alterations in white matter and disruptions in autonomic regulation. The present study aimed to determine if there is regional variability in white matter correlates of symptom severity and autonomic functioning in a mixed sample of Veterans with and without PTSD and/or mTBI (N = 77). Methods: Diffusion-weighted images were processed to extract fractional anisotropy (FA) values for major white matter structures. The PTSD Checklist-Military version (PCL-M) and Neurobehavioral Symptom Inventory (NSI) were used to determine symptom domains within PTSD and mTBI. Autonomic function was assessed using continuous blood pressure and respiratory sinus arrythmia during a static, standing angle positional test. Mixed-effect models were used to assess the regional specificity of associations between symptom severity and white matter, with FA, global symptom severity (score), and white matter tract (tract) as predictors. Additional interaction terms of symptom domain (i.e., NSI and PCL-M subscales) and loss of consciousness (LoC) were added to evaluate potential moderating effects. A parallel analysis was conducted to explore concordance with autonomic functioning. Results: Results from the two-way Score × Tract interaction suggested that global symptom severity was associated with FA in the cingulum angular bundle (positive) and uncinate fasciculus (negative) only, without variability by symptom domain. We also found regional specificity in the relationship between FA and autonomic function, such that FA was positively associated with autonomic function in all tracts except the cingulum angular bundle. History of LoC moderated the association for both global symptom severity and autonomic function. Conclusions: Our findings are consistent with previous literature suggesting that there is significant overlap in the symptom presentation in TBI and PTSD, and white matter variability associated with LoC in mTBI may be associated with increased PTSD-spectra symptoms. Further research on treatment response in patients with both mTBI history and PTSD incorporating imaging and autonomic assessment may be valuable in understanding the role of brain injury in treatment outcomes and inform treatment design.

8.
Brain Inj ; 35(8): 922-933, 2021 07 03.
Article in English | MEDLINE | ID: mdl-34053386

ABSTRACT

OBJECTIVE: Disrupted sleep is common following combat deployment. Contributors to risk include posttraumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI); however, the mechanisms linking PTSD, mTBI, and sleep are unclear. Both PTSD and mTBI affect frontolimbic white matter tracts, such as the uncinate fasciculus. The current study examined the relationship between PTSD symptom presentation, lateralized uncinate fasciculus integrity, and sleep quality. METHOD: Participants include 42 combat veterans with and without PTSD and mTBI. Freesurfer and Tracula were used to establish specific white matter ROI integrity via 3-T MRI. The Pittsburgh Sleep Quality Index and PTSD Checklist were used to assess sleep quality and PTSD symptoms. RESULTS: Decreased fractional anisotropy in the right uncinate fasciculus (ß = -1.11, SE = 0.47, p < .05) and increased hyperarousal symptom severity (ß = 3.50, SE = 0.86, p < .001) were associated with poorer sleep quality. CONCLUSION: Both right uncinate integrity and hyperarousal symptom severity are associated withsleep quality in combat veterans. The right uncinate is a key regulator of limbic behavior and sympathetic nervous system reactivity, a core component of hyperarousal. Damage to this pathway may be one mechanism by which mTBI and/or PTSD could create vulnerability for sleep problems following combat deployment.


Subject(s)
Stress Disorders, Post-Traumatic , Veterans , White Matter , Arousal , Humans , Sleep , Stress Disorders, Post-Traumatic/diagnostic imaging , White Matter/diagnostic imaging
9.
Cogn Behav Neurol ; 34(1): 26-37, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33652467

ABSTRACT

Posttraumatic stress disorder (PTSD) is prevalent among veterans with a history of traumatic brain injury (TBI); however, the relationship between TBI and PTSD is not well understood. We present the case of a 31-year-old male veteran with PTSD who reported TBI before entering the military. The reported injury appeared to be mild: He was struck on the head by a baseball, losing consciousness for ∼10 seconds. Years later, he developed severe PTSD after combat exposure. He was not receiving clinical services for these issues but was encountered in the context of a research study. We conducted cognitive, autonomic, and MRI assessments to assess brain function, structure, and neurophysiology. Next, we compared amygdala volume, uncinate fasciculus diffusion, functional connectivity, facial affect recognition, and baroreceptor coherence with those of a control group of combat veterans (n = 23). Our veteran's MRI revealed a large right medial-orbital prefrontal lesion with surrounding atrophy, which the study neuroradiologist interpreted as likely caused by traumatic injury. Comparison with controls indicated disrupted structural and functional connectivity of prefrontal-limbic structures and impaired emotional, cognitive, and autonomic responses. Detection of this injury before combat would have been unlikely in a clinical context because our veteran had reported a phenomenologically mild injury, and PTSD is a simple explanation for substance abuse, sleep impairment, and psychosocial distress. However, it may be that right prefrontal-limbic disruption imparted vulnerability for the development of PTSD and exacerbated our veteran's emotional response to, and recovery from, PTSD.


Subject(s)
Brain Concussion/psychology , Stress Disorders, Post-Traumatic/etiology , Adult , Humans , Male , Stress Disorders, Post-Traumatic/psychology
10.
Front Aging Neurosci ; 12: 587104, 2020.
Article in English | MEDLINE | ID: mdl-33613261

ABSTRACT

BACKGROUND: Cerebral metabolites are associated with different physiological processes in brain aging. Cortical and limbic structures play important roles in cognitive aging; however, the relationship between these structures and age remains unclear with respect to physiological underpinnings. Regional differences in metabolite levels may be related to different structural and cognitive changes in aging. METHODS: Magnetic resonance imaging and spectroscopy were obtained from 117 cognitively healthy older adults. Limbic and other key structural volumes were measured. Concentrations of N-acetylaspartate (NAA) and choline-containing compounds (Cho) were measured in frontal and parietal regions. Neuropsychological testing was performed including measures of crystallized and fluid intelligence and memory. RESULTS: NAA in the frontal voxel was associated with limbic and cortical volumes, whereas Cho in parietal cortex was negatively associated with hippocampal and other regional volumes. Hippocampal volume was associated with forgetting, independent of age. Further, parietal Cho and hippocampal volume contributed independent variance to age corrected discrepancy between fluid and crystallized abilities. CONCLUSION: These findings suggest that physiological changes with age in the frontal and parietal cortices may be linked to structural changes in other connected brain regions. These changes are differentially associated with cognitive performance, suggesting potentially divergent mechanisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...